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Agenda

Definition of almost perfect nonlinear (APN) functions, including
crypto motivation.

1.) BIG open problem: APN permutations if n is even.
I Problem solved for partially APN.
I Designs?

2.) Apparently there are many APN functions. Find nice
constructions of some of them and show inequivalence.

3.) Find non-quadratic APNs: not much progress after 2006.
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Cryptography

Try to find functions fK depending on a key K

fK : Fn
2 → Fm

2

such that there is confusion and diffusion Shannon (1949):

I Confusion: Changing the input has inpredictable effect on the
output.

I Diffusion: Changing few entries in the input changes many
entries in the output.

Because of confusion, linear functions are out.
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The core of many cryptographic systems

Many cryptographic schemes use, as a main ingredient, S-boxes
(S : substitution):

S : Fn
2 → Fm

2 .

Then
fK : Fn

2 → Fm
2 , x 7→ S(x + K ).

Function S should be highly nonlinear to provide confusion.

Nice to have: S is a permutation and n is even.

Problem
How can we measure nonlinearity?
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Perfect nonlinearity

Since cryptographers are paranoid, they want to create functions
which are perfect nonlinear:

Definition
Let p be a prime. A function F : Fn

p → Fn
p is perfect nonlinear, if

x 7→ F (x + a)− F (x)

is a permutation for all a 6= 0.

The function x 7→ F (x + a)− F (x) is called the derivative of F ,
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The case Fn
2

Cryptographers want Fn
2. BUT: There is no perfect nonlinear

function on Fn
2:

F (x + a) + F (x) = F (y + a) + F (y)

for y = x + a.

Definition
A function F : Fn

2 → Fn
2 is almost perfect nonlinear (APN) if

x 7→ F (x + a) + F (x)

is 2 to 1 for all a 6= 0.

In other words: F (x + a) + F (x) = b has 0 or 2 solutions for a 6= 0.
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A simple example

We identify Fn
2 with the finite field F2n .

F (x) = x3

defined on Fq with q = 2n even:

F (x + a) + F (x) = x2a + a2x + a3 = b

has at most 2 solutions for all a 6= 0, hence APN.

This is a permutation if n is odd, but not if n is even.
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The inverse function

Consider
F (x) = x−1

defined on Fq with q = 2n even. It is a permutation.

It is APN if n is odd, but not if n is even.

This is the core substitution box for the Advanced Encryption
Standard where n is even (and x−1 is only almost APN).
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Code interpretation of APN functions

Let F be APN.  1
x

F (x)


x∈Fn

2

∈ F(2n+1,2n)
2

row space generates a code. The dual code has minimum weight 6:

F (z) + F (x + z) + F (y + z) + F (x + y + z) 6= 0

for all distinct z , x + z , y + z , x + y + z .

Conversely: Any such code with minimum weight 6 defines APN
function.

Equivalence of functions is code equivalence!
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Monomial APNs xd on F2n

d Condition

Gold 2k + 1 gcd(k, n) = 1

Kasami 22k − 2k + 1 gcd(k, n) = 1

Welch 2t + 3 n = 2t + 1

Niho 2t + 2
t
2 − 1, t even n = 2t + 1

2t + 2
3t+1
2 − 1, t odd

inverse function −1 n = 2t + 1

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t

If n is even, none of them are permutations.
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Problem 1: The BIG APN problem

Find APN permutations on Fn
2 with n even and n > 6.

Browning, Dillon, McQuistan, Wolfe (2010) found an
APN permutation in F26 . They started with the APN function on
F26

x 7→ x3 + x10 + αx24,

for some α and then applied code equivalence.

The race for more APN permutations is still going on!
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Another Interesting APN

J. F. Dillon APN Polynomials: An Update
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A promising approach: Butterflies?

Let n = 2m and x , y ∈ Fm
2 . Consider

1
x
y

R(x , y)
R(y , x)


x ,y∈Fm

2

∈ F(2n+1,2n)
2

where R : F2m
2 → Fm

2 such that x 7→ R(x , y0) is a permutation for
all y0. Assume this is APN (bivariate representation).
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Swapping


1
x

R(x , y)
y

R(y , x)


x ,y∈Fm

2

∈ F(2n+1,2n)
2

is an APN permutation (in code terminology). Browning,
Dillon, McQuistan, Wolfe example used

R(x , y) = (x + αy)3 + x3.

This very nice description is due to Perrin, Udovenko,
Biryukov (2016). Impossible to generalize this function
Canteaut, Perrin, Tian (2018).
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Partially APN permutations

Budaghyan, Kaleyski, Kwon, Riera, Stanica (2019)
studied functions F : Fn

2 → Fn
2 such that for all a 6= 0

F (x + a) + F (x) 6= F (a) + F (0)

for all x 6= 0, a. They called these partially APN.

Alternatively: F (x) + F (x + a) + F (a) 6= F (0) or (if F (0) = 0)

F (x)+F (y)+F (z) 6= 0 for all disinct x , y , z 6= 0 with x + y + z = 0.

I There are many more partially APN than APN.

I They found many partially APN permutations, but no infinite
family.
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Steiner systems

Steiner quadruple systems:

I v points

I blocks of size 4

I Any three different points are contained in exactly one block.

Hanani 1960: Existence if and only if v ≡ 2 or 4 modulo 6.

Steiner triple systems:

I v points

I blocks of size 3

I Any two different points are contained in exactly one block.

Kirkman: Existence if and only if v ≡ 1 or 3 modulo 6.
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The classical Steiner systems

I triple system on Fn
2 \ {0}: Points and 2-dimensional

subspaces.

I quadruple system on Fn
2: Points and 2-dimensional affine

subspaces.
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Partially APN permutations

Theorem (P. (2019))

For any n ≥ 3 there are partially APN permutations on Fn
2.

Proof:

I The blocks {x , y , z : x , y , z different} form the classical
Steiner triple system on Fn

2 \ {0} (any two different points
are contained in exactly one triple).

I Teirlinck (1977) proved that any two Steiner triple
systems S and T defined on a point set V have a disjoint
realization.

I That means, there is an isomorphic copy T ′ of T on V such
that no triple occurs both in S and T ′.

I If we begin with the classical Steiner triple systems T = S,
then T ′ provides us with the desired permutation.

18 / 37



Comments

I Teirlinck’s result has a short (1 page) and elementary but
non-trivial proof.

I Teirlinck’s result is needed only for the classical Steiner
triple system.

I Teirlinck’s result is not constructive.

I This approach is far away from using finite fields!
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Rodier Condition

I F : Fn
2 → Fn

2 is an APN function if and only if

F (x) + F (y) + F (z) + F (u) 6= 0

for all subsets {x , y , z , u} of order 4 with x + y + z + u = 0.

I Note that the subsets {x , y , z , u} of order 4 with
x + y + z + u = 0 form the classical Steiner quadruple
system.
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APN permutations and Steiner quadruple systems

If F is APN on Fn
2, then F (x) + F (y) + F (z) + F (u) 6= 0 if

{x , y , z , u} is an affine subspace of Fn
2.

Interesting Observation:

There is an APN permutation F iff there is a collection of subsets
Di of size 4 on Fn

2 forming the classical Steiner quadruple system
of affine subspaces such that none of the Di is an affine subspace
of dimension 2.

The Di are simply the sets{
{F (x),F (y),F (z),F (u)} : x + y + z + u = 0

}
.
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APN permutations and quadruple systems

I We tried to generalize the Teirlinck result to quadruple
systems, without success.

I APN for arbitrary quadruple systems?

22 / 37



Why finite fields?

I APN is an additive property. Why use multiplicative group for
the construction?

I Using the mix of additive and multiplicative structure is a
common approach in difference set theory. Nice multiplicative
subsets are difference sets in the additive group, or vice versa.

I Squares in Fq form a difference set in the additive group.
I A hyperplane in Fn

p gives rise to a Singer cycle in the
multiplicative group.

I · · ·

I BUT: The APN permutation is ugly; it has no nice finite
fields representation.
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Why are there (perhaps) no APN permutations?

Try to build an APN function F : Fn
2 → Fn

2 from maximal
nonlinear coordinate functions f : Fn

2 → F2, which are called
bent functions:

I bent: x 7→ f (x + a) + f (x) is balanced.

I Bent functions itself are not balanced, so they cannot be used
to construct APN permutations. Actually APN permutations
have to avoid them.
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All APNs xd on F2n before 2006

d Condition

Gold 2k + 1 gcd(k, n) = 1

Kasami 22k − 2k + 1 gcd(k, n) = 1

Welch 2t + 3 n = 2t + 1

Niho 2t + 2
t
2 − 1, t even n = 2t + 1

2t + 2
3t+1
2 − 1, t odd

inverse function −1 n = 2t + 1

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t
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NSA/Magdeburg 2006

Edel, P., Kyureghyan; Bierbrauer; Dillon,
McQuistan, Wolfe), found several new APNs:

Example

I x 7→ x3 + x10 + αx24 on F26

I more on F26

I x 7→ x3 + βx2
5+22 on F210

I x 7→ x3 + γx2
9+24 on F212

α, β, γ must be chosen properly.
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J.F. Dillon
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The race to find more examples

I In 2006 it was easy to check that new examples are really new!

I The first infinite family after 2006 was found by
Budaghyan, Carlet, Leander (2008).

I The number of families is decreasing, thanks to Budaghyan,
Calderini, Villa (2019): Some families coincide.

I It seems to become more and more difficult to find provable
new APN functions.
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Current status
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The Zhou-Kaspers theorem

I One family [F10] is due to Zhou, P. (2013). It is the APN
version of a perfect nonlinear function in odd characteristic
(two parameter family of semifields, projective planes).

I Now Zhou, Kaspers (2019) investigated inequivalence.
Their result provides the best lower bound on the number of
inequivalent APNs.
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Many more sporadic examples are known

There are many sporadic examples, mostly found by local change
techniques. With one exception, none of it has been turned into an
infinite family Budaghyan, Carlet, Leander (2009):

x3 + tr(x9)

is APN on F2n : Change only one coordinate function.

Other local change approaches: Yu, Wang, Li (2013).
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Problem 2

Find more powerful constructions (more parameters to play with)
which give pairwise inequivalent examples.

In other words: Beat the Zhou-Kaspers theorem.

Model: Kantor’s result on commutative semifields (2003).
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quadratic vs. non-quadratic

F is called a Dembowski-Ostrom polynomial or quadratic if

F (x + a)− F (x)

is affine:

F (x) =
∑
i ,j

αi ,jx
pi+pj +

∑
j

βjx
pj + γ.

There are several non-quadratic APN monomials, for instance x−1.

With only one exception, no new non-quadratic APN has been
found since 2006, when the race begun.
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Quadratic case: Easy proofs

If F is quadratic, then x 7→ F (x + a) +F (x) +F (a) +F (0) is linear.

We just need to determine the kernels to check the APN property
(dimension must be 1).
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One sporadic non-quadratic APN

Edel, P. 2009 found some u such that

x3 + u17(x17 + x18 + x20 + x24) +

u14(tr(u52x3 + u6x5 + u19x7 + u28x11 + u2x13) +

tr82((u2x)9) + tr42(x21))

in F26 is APN, where

x3 + u17(x17 + x18 + x20 + x24)

is APN (local change).

Brinkmann, Leander
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Problem 3

Find more non-quadratic APN functions.
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Summary

I Definition of APN functions, including crypto motivation.
I BIG open problem: APN permutations if n is even.

I Problem solved for partially APN.
I Designs?

I Apparently there are many APN functions. Find nice
constructions, perhaps without finite fields, and show
inequivalence.

I Non-quadratic APNs: not much progress after 2006.
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