Design-theoretic aspects of vectorial bent functions

Alexandr Polujan joint work with Alexander Pott

Otto von Guericke University Magdeburg, Germany

KolKom 2019 Paderborn, Germany November 9, 2019

Boolean and Vectorial Functions

- $\mathbb{F}_2 = \{0, 1\}$: Finite field with 2 elements.
- \mathbb{F}_2^n : Vector space over \mathbb{F}_2 of dimension n.
- We consider mappings $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$, particularly:
 - Single-output (m = 1) case: Boolean functions.
 - Multi-output $(m \ge 2)$ case: Vectorial functions.
- We identify a vectorial function F: 𝔽ⁿ₂ → 𝔽^m₂ with m coordinate Boolean functions in the following way:

$$F(x_1,\ldots,x_n) = \begin{pmatrix} f_1(x_1,\ldots,x_n) \\ f_2(x_1,\ldots,x_n) \\ \vdots \\ f_m(x_1,\ldots,x_n) \end{pmatrix}$$

We are interested in bent = perfect nonlinear functions.

Alexandr Polujan (Magdeburg)

Boolean Bent Functions

▶ A Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is called bent if the equation

$$f(x+a) - f(x) = b$$

has 2^{n-1} solutions for all $a \neq 0$ and any b.

Alexandr Polujan (Magdeburg)

Bent Functions and Designs

Boolean Bent Functions

▶ A Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is called bent if the equation

$$f(x+a) - f(x) = b$$

has 2^{n-1} solutions for all $a \neq 0$ and any b.

► They exist if and only if *n* is even.

Boolean Bent Functions

▶ A Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is called bent if the equation

$$f(x+a) - f(x) = b$$

has 2^{n-1} solutions for all $a \neq 0$ and any b.

They exist if and only if n is even.

Example 1

A function $F \colon \mathbb{F}_2^n \to \mathbb{F}_2$, given by

$$f(x_1, \dots, x_n) = x_1 x_2 + x_3 x_4 + \dots + x_{n-1} x_n$$

is bent.

Alexandr Polujan (Magdeburg)

• A function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is vectorial bent if f(x+a) - f(x) = b

has 2^{n-m} solutions for all $a \neq 0$ and all b.

Alexandr Polujan (Magdeburg)

▶ A function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is vectorial bent if

$$f(x+a) - f(x) = b$$

has 2^{n-m} solutions for all $a \neq 0$ and all b.

• They exist if and only if n is even and $m \le n/2$.

• A function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is vectorial bent if

$$f(x+a) - f(x) = b$$

has 2^{n-m} solutions for all $a \neq 0$ and all b.

- They exist if and only if n is even and $m \le n/2$.
- Vectorial bent functions are *m*-dimensional vector spaces of Boolean bent functions.

• A function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is vectorial bent if

$$f(x+a) - f(x) = b$$

has 2^{n-m} solutions for all $a \neq 0$ and all b.

- They exist if and only if n is even and $m \le n/2$.
- Vectorial bent functions are *m*-dimensional vector spaces of Boolean bent functions.

Example 2 (The Maiorana-McFarland Construction)

A function $F \colon \mathbb{F}_2^{n/2} \times \mathbb{F}_2^{n/2} \to \mathbb{F}_2^m$, given by

$$F(x,y) := L(x \cdot \pi(y)) + G(y)$$

is vectorial bent if L is any affine function from $\mathbb{F}_2^{n/2}$ onto \mathbb{F}_2^m , π is an permutation of $\mathbb{F}_2^{n/2}$ and G is any function on $\mathbb{F}_2^{n/2}$.

Alexandr Polujan (Magdeburg)

Designs and Divisible Designs

 $\blacktriangleright \mathcal{P}$ is a set of points and \mathcal{B} is a set of blocks.

Alexandr Polujan (Magdeburg)

Bent Functions and Designs

KolKom 2019

Designs and Divisible Designs

- \mathcal{P} is a set of points and \mathcal{B} is a set of blocks.
- The pair $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is called a t- (v, k, λ) design, if:
 - $|\mathcal{P}| = v;$
 - \mathcal{B} is a collection of *k*-subsets of \mathcal{P} ;
 - Every *t*-subset of \mathcal{P} is contained in exactly λ blocks of \mathcal{B} .

Designs and Divisible Designs

- P is a set of points and B is a set of blocks.
- The pair $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is called a t- (v, k, λ) design, if:
 - $|\mathcal{P}| = v;$
 - \mathcal{B} is a collection of *k*-subsets of \mathcal{P} ;
 - Every *t*-subset of \mathcal{P} is contained in exactly λ blocks of \mathcal{B} .
- The pair $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is called a (μ, ν, k, λ) divisible design, if:
 - |P| = μ · ν, the point set is divided into μ point classes of size ν each;
 - \mathcal{B} is a collection of *k*-subsets of \mathcal{P} ;
 - Any two distinct points, which are not equivalent, are contained in exactly λ blocks;
 - Any two distinct points, which are equivalent, are not contained in a block.

► For a subset B of an additive group (G, +) the development of B is an incidence structure dev(B) = (P, B) with

$$\mathcal{P} = \{g \colon g \in G\} \quad \text{and} \quad \mathcal{B} = \{B_g \colon B_g = \{b + g : b \in B\}\}.$$

► For a subset B of an additive group (G, +) the development of B is an incidence structure dev(B) = (P, B) with

$$\mathcal{P} = \{g \colon g \in G\} \quad \text{and} \quad \mathcal{B} = \{B_g \colon B_g = \{b + g : b \in B\}\}.$$

▶ The graph $G_F \subset \mathbb{F}_2^{n+m}$ of a function $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$, is the set

$$G_F := \begin{pmatrix} \dots & x & \dots \\ \dots & F(x) & \dots \end{pmatrix}_{x \in \mathbb{F}_2^n}$$

Alexandr Polujan (Magdeburg)

Bent Functions and Designs

► For a subset B of an additive group (G, +) the development of B is an incidence structure dev(B) = (P, B) with

$$\mathcal{P} = \{g \colon g \in G\} \quad \text{and} \quad \mathcal{B} = \{B_g \colon B_g = \{b + g : b \in B\}\}.$$

▶ The graph $G_F \subset \mathbb{F}_2^{n+m}$ of a function $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$, is the set

$$G_F := \begin{pmatrix} \dots & x & \dots \\ \dots & F(x) & \dots \end{pmatrix}_{x \in \mathbb{F}_2^n}$$

▶ Boolean bent case $f : \mathbb{F}_2^n \to \mathbb{F}_2$. $dev(G_f)$ is a $(2^n, 2^1, 2^n, 2^{n-1})$ divisible design.

Alexandr Polujan (Magdeburg)

► For a subset B of an additive group (G, +) the development of B is an incidence structure dev(B) = (P, B) with

$$\mathcal{P} = \{g \colon g \in G\} \quad \text{and} \quad \mathcal{B} = \{B_g \colon B_g = \{b + g : b \in B\}\}.$$

▶ The graph $G_F \subset \mathbb{F}_2^{n+m}$ of a function $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$, is the set

$$G_F := \begin{pmatrix} \dots & x & \dots \\ \dots & F(x) & \dots \end{pmatrix}_{x \in \mathbb{F}_2^n}$$

Boolean bent case f: Fⁿ₂ → F₂. dev(G_f) is a (2ⁿ, 2¹, 2ⁿ, 2ⁿ⁻¹) divisible design.
Vectorial bent case F: Fⁿ₂ → F^m₂. dev(G_F) is a (2ⁿ, 2^m, 2ⁿ, 2^{n-m}) divisible design.

Alexandr Polujan (Magdeburg)

Bent Functions and Designs

• Consider a linear code C(F) with generator matrix, given by

$$\begin{pmatrix} 1 & \dots & 1 \\ \dots & x & \dots \\ \dots & F(x) & \dots \end{pmatrix}_{x \in \mathbb{F}_2^n}$$

.

• Consider a linear code C(F) with generator matrix, given by

$$\begin{pmatrix} 1 & \dots & 1 \\ \dots & x & \dots \\ \dots & F(x) & \dots \end{pmatrix}_{x \in \mathbb{F}_2^n}$$

• Design $\mathbb{D}(F) = (\mathcal{P}, \mathcal{B})$ is formed by words of minimum weight:

 $\mathcal{P} = \{x \colon x \in \mathbb{F}_2^n\} \text{ and } \mathcal{B} = \{ \operatorname{supp}(f) \colon f \in \mathcal{C}(F), \operatorname{wt}(f) = w_{\min} \}.$

Bent Functions and Designs

▶ Consider a linear code C(F) with generator matrix, given by

$$\begin{pmatrix} 1 & \dots & 1 \\ \dots & x & \dots \\ \dots & F(x) & \dots \end{pmatrix}_{x \in \mathbb{F}_2^n}$$

• Design $\mathbb{D}(F) = (\mathcal{P}, \mathcal{B})$ is formed by words of minimum weight:

$$\mathcal{P} = \{x \colon x \in \mathbb{F}_2^n\} \text{ and } \mathcal{B} = \{ \operatorname{supp}(f) \colon f \in \mathcal{C}(F), \operatorname{wt}(f) = w_{\min} \}.$$

• For a bent function $w_{\min} = 2^{n-1} - 2^{n/2-1}$.

Alexandr Polujan (Magdeburg)

Bent Functions and Designs

▶ Consider a linear code C(F) with generator matrix, given by

$$\begin{pmatrix} 1 & \dots & 1 \\ \dots & x & \dots \\ \dots & F(x) & \dots \end{pmatrix}_{x \in \mathbb{F}_2^n}$$

▶ Design $\mathbb{D}(F) = (\mathcal{P}, \mathcal{B})$ is formed by words of minimum weight:

$$\mathcal{P} = \{x \colon x \in \mathbb{F}_2^n\} \text{ and } \mathcal{B} = \{ \operatorname{supp}(f) \colon f \in \mathcal{C}(F), \operatorname{wt}(f) = w_{\min} \}.$$

For a bent function w_{min} = 2ⁿ⁻¹ - 2^{n/2-1}.
 Boolean bent case f: F₂ⁿ → F₂.
 D(f) is a 2-(2ⁿ, 2ⁿ⁻¹ - 2^{n/2-1}, λ = 2ⁿ⁻² - 2^{n/2-1}) design.

Alexandr Polujan (Magdeburg)

Bent Functions and Designs

▶ Consider a linear code C(F) with generator matrix, given by

$$\begin{pmatrix} 1 & \dots & 1 \\ \dots & x & \dots \\ \dots & F(x) & \dots \end{pmatrix}_{x \in \mathbb{F}_2^r}$$

▶ Design $\mathbb{D}(F) = (\mathcal{P}, \mathcal{B})$ is formed by words of minimum weight:

$$\mathcal{P} = \{x \colon x \in \mathbb{F}_2^n\} \text{ and } \mathcal{B} = \{ \operatorname{supp}(f) \colon f \in \mathcal{C}(F), \operatorname{wt}(f) = w_{\min} \}.$$

For a bent function
$$w_{\min} = 2^{n-1} - 2^{n/2-1}$$
.

Boolean bent case f: F₂ⁿ → F₂.
 D(f) is a 2-(2ⁿ, 2ⁿ⁻¹ - 2^{n/2-1}, λ = 2ⁿ⁻² - 2^{n/2-1}) design.
 Vectorial bent case F: F₂ⁿ → F₂^m.

 $\mathbb{D}(F)$ is a 2- $(2^n,2^{n-1}-2^{n/2-1},\lambda\cdot(2^m-1))$ design.

Alexandr Polujan (Magdeburg)

Bent Functions and Designs

Equivalence of Functions and Isomorphism of Designs

► Functions $F, F': \mathbb{F}_2^n \to \mathbb{F}_2^m$ are EA-equivalent $F \stackrel{\text{EA}}{\to} F'$, if \exists affine permutations \mathcal{L}_1 of \mathbb{F}_2^n and \mathcal{L}_2 of \mathbb{F}_2^m , s.t.

$$F = \mathcal{L}_2 \circ F' \circ \mathcal{L}_1.$$

Equivalence of Functions and Isomorphism of Designs

► Functions $F, F': \mathbb{F}_2^n \to \mathbb{F}_2^m$ are EA-equivalent $F \stackrel{\text{EA}}{\to} F'$, if \exists affine permutations \mathcal{L}_1 of \mathbb{F}_2^n and \mathcal{L}_2 of \mathbb{F}_2^m , s.t.

$$F = \mathcal{L}_2 \circ F' \circ \mathcal{L}_1.$$

Designs D and D' with incidence matrices M and M' are isomorphic D ≅ D', if ∃ permutation matrices P₁ and P₂, s.t.

$$M = P_2 M' P_1.$$

Alexandr Polujan (Magdeburg)

Equivalence of Functions and Isomorphism of Designs

► Functions $F, F': \mathbb{F}_2^n \to \mathbb{F}_2^m$ are EA-equivalent $F \stackrel{\text{\tiny EA}}{\sim} F'$, if \exists affine permutations \mathcal{L}_1 of \mathbb{F}_2^n and \mathcal{L}_2 of \mathbb{F}_2^m , s.t.

$$F = \mathcal{L}_2 \circ F' \circ \mathcal{L}_1.$$

Designs D and D' with incidence matrices M and M' are isomorphic D ≅ D', if ∃ permutation matrices P₁ and P₂, s.t.

$$M = P_2 M' P_1.$$

Main Question: Does isomorphism of translation and addition designs coincide with EA-equivalence of bent functions?

Alexandr Polujan (Magdeburg)

Result 1 (Folklore)

Let $F, F' \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$ be bent. $F \stackrel{\scriptscriptstyle{\mathsf{EA}}}{\sim} F' \Rightarrow \operatorname{dev}(G_F) \cong \operatorname{dev}(G_{F'}).$

Alexandr Polujan (Magdeburg)

Bent Functions and Designs

Result 1 (Folklore)

Let $F, F' \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$ be bent. $F \stackrel{\scriptscriptstyle{\mathsf{EA}}}{\sim} F' \Rightarrow \operatorname{dev}(G_F) \cong \operatorname{dev}(G_{F'}).$

- ▶ Boolean bent case: $f \stackrel{\scriptscriptstyle \mathsf{EA}}{\sim} f' \notin \operatorname{dev}(G_f) \cong \operatorname{dev}(G_{f'})$.
- ▶ Vectorial bent case: $F \stackrel{\mathsf{EA}}{\sim} F' \stackrel{?}{\leftarrow} \operatorname{dev}(G_F) \cong \operatorname{dev}(G_{F'}).$

Result 1 (Folklore)

Let $F, F' \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$ be bent. $F \stackrel{\scriptscriptstyle \mathsf{EA}}{\sim} F' \Rightarrow \operatorname{dev}(G_F) \cong \operatorname{dev}(G_{F'}).$

- ▶ Boolean bent case: $f \stackrel{\scriptscriptstyle \mathsf{EA}}{\sim} f' \notin \operatorname{dev}(G_f) \cong \operatorname{dev}(G_{f'})$.
- Vectorial bent case: $F \stackrel{EA}{\sim} F' \stackrel{?}{\leftarrow} \operatorname{dev}(G_F) \cong \operatorname{dev}(G_{F'}).$

Result 2 (Kantor 1983; Dillon and Schatz 1987; Bending 1993) Let $f, f': \mathbb{F}_2^n \to \mathbb{F}_2$ be Boolean bent. $f \stackrel{\text{EA}}{\sim} f' \iff \mathbb{D}(f) \cong \mathbb{D}(f')$.

Alexandr Polujan (Magdeburg)

Bent Functions and Designs

Result 1 (Folklore)

Let $F, F' \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$ be bent. $F \stackrel{\scriptscriptstyle \mathsf{EA}}{\sim} F' \Rightarrow \operatorname{dev}(G_F) \cong \operatorname{dev}(G_{F'}).$

- ▶ Boolean bent case: $f \stackrel{\scriptscriptstyle \mathsf{EA}}{\sim} f' \notin \operatorname{dev}(G_f) \cong \operatorname{dev}(G_{f'})$.
- ▶ Vectorial bent case: $F \stackrel{\mathsf{EA}}{\sim} F' \stackrel{?}{\leftarrow} \operatorname{dev}(G_F) \cong \operatorname{dev}(G_{F'}).$

Result 2 (Kantor 1983; Dillon and Schatz 1987; Bending 1993)

Let $f, f' \colon \mathbb{F}_2^n \to \mathbb{F}_2$ be Boolean bent. $f \stackrel{\scriptscriptstyle \mathsf{EA}}{\sim} f' \iff \mathbb{D}(f) \cong \mathbb{D}(f')$.

- Boolean bent case: Were introduced by Kantor in 1975.
- Vectorial bent case: Were introduced by Ding, Munemasa and Tonchev in 2019.

Alexandr Polujan (Magdeburg)

Result 1 (Folklore)

Let $F, F' \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$ be bent. $F \stackrel{\scriptscriptstyle{\mathsf{EA}}}{\sim} F' \Rightarrow \operatorname{dev}(G_F) \cong \operatorname{dev}(G_{F'}).$

- ▶ Boolean bent case: $f \stackrel{\scriptscriptstyle \mathsf{EA}}{\sim} f' \notin \operatorname{dev}(G_f) \cong \operatorname{dev}(G_{f'})$.
- ▶ Vectorial bent case: $F \stackrel{\mathsf{EA}}{\sim} F' \stackrel{?}{\leftarrow} \operatorname{dev}(G_F) \cong \operatorname{dev}(G_{F'}).$

Result 2 (Kantor 1983; Dillon and Schatz 1987; Bending 1993)

Let $f, f' \colon \mathbb{F}_2^n \to \mathbb{F}_2$ be Boolean bent. $f \stackrel{\scriptscriptstyle \mathsf{EA}}{\sim} f' \iff \mathbb{D}(f) \cong \mathbb{D}(f')$.

- Boolean bent case: Were introduced by Kantor in 1975.
- Vectorial bent case: Were introduced by Ding, Munemasa and Tonchev in 2019.
- ▶ Vectorial bent case: $F \stackrel{\text{\tiny EA}}{\sim} F' \iff \mathbb{D}(F) \cong \mathbb{D}(F').$

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Yes, for all even n
$m \ge 2$: Vectorial case	?	?

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Yes, for all even n
$m \ge 2$: Vectorial case	?	Conjecture Yes, for all even n

1. The conjecture of Ding, Munemasa and Tonchev 2019. Addition designs of Boolean and vectorial bent functions behave in the same way.

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Yes, for all even n
$m \ge 2$: Vectorial case	?	Conjecture Yes, for all even n

- 1. The conjecture of Ding, Munemasa and Tonchev 2019. Addition designs of Boolean and vectorial bent functions behave in the same way.
- 2. Translation designs of vectorial bent functions. Nothing is known for $n \ge 6$.

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$?	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Yes, for all even n
$m \ge 2$: Vectorial case	?	Yes, for all even n

- The conjecture of Ding, Munemasa and Tonchev 2019. Addition designs of Boolean and vectorial bent functions behave in the same way. ✓
- 2. Translation designs of vectorial bent functions. Nothing is known for $n \ge 6$.

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$?	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Voc. for all aron n
$m \ge 2$: Vectorial case	?	Tes, for an even n

- The conjecture of Ding, Munemasa and Tonchev 2019. Addition designs of Boolean and vectorial bent functions behave in the same way. ✓
- 2. Translation designs of vectorial bent functions. Nothing is known for $n \ge 6$.

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$?	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Vos. for all avan n
$m \ge 2$: Vectorial case	Yes, for $n = 6$	Tes, for an even n

- The conjecture of Ding, Munemasa and Tonchev 2019. Addition designs of Boolean and vectorial bent functions behave in the same way. ✓
- 2. Translation designs of vectorial bent functions. Nothing is known for $n \ge 6$. \checkmark

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Yes, for all even n
$m \ge 2$: Vectorial case	?	Conjecture Yes, for all even n

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$?	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Yes, for all even n
$m \ge 2$: Vectorial case	?	Conjecture Yes, for all even n

▶ Functions $F, F': \mathbb{F}_2^n \to \mathbb{F}_2^m$ are called CCZ-equivalent, if there exists an affine permutation \mathcal{L} of $\mathbb{F}_2^n \times \mathbb{F}_2^m$ s.t. $\mathcal{L}(G_F) = G_{F'}$.

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$?	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Yes, for all even n
$m \ge 2$: Vectorial case	?	Conjecture Yes, for all even n

- ▶ Functions $F, F': \mathbb{F}_2^n \to \mathbb{F}_2^m$ are called CCZ-equivalent, if there exists an affine permutation \mathcal{L} of $\mathbb{F}_2^n \times \mathbb{F}_2^m$ s.t. $\mathcal{L}(G_F) = G_{F'}$.
- CCZ-equivalence is code equivalence.

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$?	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Yes, for all even n
$m \ge 2$: Vectorial case	?	Conjecture Yes, for all even n

Functions F, F': 𝔅ⁿ₂ → 𝔅^m₂ are called CCZ-equivalent, if there exists an affine permutation L of 𝔅ⁿ₂ × 𝔅^m₂ s.t. L (G_F) = G_{F'}.
 CCZ-equivalence is code equivalence.

 $F \stackrel{ccz}{\sim} F' \iff C(F) \stackrel{code}{\sim} C(F')$ Dillon, B., K., M. 2009

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$?	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Yes, for all even n
$m \ge 2$: Vectorial case	?	Conjecture Yes, for all even n

Functions F, F': 𝔅ⁿ₂ → 𝔅^m₂ are called CCZ-equivalent, if there exists an affine permutation L of 𝔅ⁿ₂ × 𝔅^m₂ s.t. L (G_F) = G_{F'}.
 CCZ-equivalence is code equivalence.

$$F \stackrel{\text{ccz}}{\sim} F' \iff \mathcal{C}(F) \stackrel{\text{code}}{\sim} \mathcal{C}(F') \quad \text{Dillon, B., K., M. 2009}$$

$$\stackrel{\text{F.F. are bent}}{\longleftrightarrow} \quad \mathbb{D}(F) \cong \mathbb{D}(F') \quad \text{Ding, M., T. 2019}$$

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$?	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Yes, for all even n
$m \ge 2$: Vectorial case	?	Conjecture Yes, for all even n

- ▶ Functions $F, F': \mathbb{F}_2^n \to \mathbb{F}_2^m$ are called CCZ-equivalent, if there exists an affine permutation \mathcal{L} of $\mathbb{F}_2^n \times \mathbb{F}_2^m$ s.t. $\mathcal{L}(G_F) = G_{F'}$.
- CCZ-equivalence is code equivalence.

$$\begin{array}{ccccc} F & \longleftrightarrow & \mathcal{C}(F) \overset{\text{code}}{\sim} \mathcal{C}(F') & \text{Dillon, B., K., M. 2009} \\ & & & & & \\ F,F' & & & \\ & & & & \\ & &$$

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Yes, for all even n
$m \ge 2$: Vectorial case	?	Yes, for all even n

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Yes, for all even n
$m \ge 2$: Vectorial case	?	Yes, for all even n

Theorem 1

Let $F, F' \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$ be vectorial bent. Then $F \stackrel{\text{\tiny EA}}{\sim} F'$ iff their addition designs $\mathbb{D}(F) \cong \mathbb{D}(F')$.

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$?	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Voc. for all aron n
$m \ge 2$: Vectorial case	?	Tes, for an even n

Theorem 1

Let $F, F' \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$ be vectorial bent. Then $F \stackrel{\text{\tiny EA}}{\sim} F'$ iff their addition designs $\mathbb{D}(F) \cong \mathbb{D}(F')$.

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$?	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Vos. for all oven n
$m \ge 2$: Vectorial case	?	Tes, for an even n

Theorem 1

Let $F, F' \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$ be vectorial bent. Then $F \stackrel{\text{\tiny EA}}{\sim} F'$ iff their addition designs $\mathbb{D}(F) \cong \mathbb{D}(F')$.

► A technical proof: see the thesis of Bending 1993.

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Vos. for all oyon n
$m \ge 2$: Vectorial case	?	Tes, for an even n

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Vos. for all over n
$m \ge 2$: Vectorial case	?	

► All Boolean bent functions in 6 variables form:

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Ves for all even n
$m \ge 2$: Vectorial case	?	Tes, for an even n

All Boolean bent functions in 6 variables form:

- 4 EA-equivalence classes;
- 3 Non-isomorphic designs $dev(G_f)$.

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Vos. for all avon a
$m \ge 2$: Vectorial case	?	res, for an even n

► All Boolean bent functions in 6 variables form:

- 4 EA-equivalence classes;
- 3 Non-isomorphic designs $dev(G_f)$.
- Example (Kholosha and Pott 2013)

 $x_1x_4 + x_2x_5 + x_3x_6$ and $x_1x_4 + x_2x_5 + x_3x_6 + x_4x_5x_6$.

Alexandr Polujan (Magdeburg)

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Vos. for all avon a
$m \ge 2$: Vectorial case	?	res, for an even n

All Boolean bent functions in 6 variables form:

- 4 EA-equivalence classes;
- 3 Non-isomorphic designs $dev(G_f)$.
- Example (Kholosha and Pott 2013)

 $x_1x_4 + x_2x_5 + x_3x_6$ and $x_1x_4 + x_2x_5 + x_3x_6 + x_4x_5x_6$.

Problem: The classification of vectorial bent functions in 6 variables is not known.

Alexandr Polujan (Magdeburg)

Classification and Count of Vectorial Bent Functions on \mathbb{F}_2^6

Alexandr Polujan (Magdeburg)

Classification and Count of Vectorial Bent Functions on \mathbb{F}_2^6

(n,m)	# of Bent Functions $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$	# of EA-eq. Classes	# of Isom. Classes
(6,1)	$5,425,430,528 \approx 2^{32.33}$	4	3
(6, 2)	$23,392,233,361,244,160 \approx 2^{54.37}$	9	9
(6, 3)	$121,282,113,886,947,901,440 \approx 2^{66.71}$	13	13

Bent Functions and Designs

Alexandr Polujan (Magdeburg)

Classification and Count of Vectorial Bent Functions on \mathbb{F}_2^6

(n,m)	# of Bent Functions $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^m$	# of EA-eq. Classes	# of Isom. Classes
(6,1)	$5,425,430,528 \approx 2^{32.33}$	4	3
(6, 2)	$23,392,233,361,244,160 \approx 2^{54.37}$	9	9
(6, 3)	$121,282,113,886,947,901,440 \approx 2^{66.71}$	13	13

Theorem 2

Let F, F' be vectorial bent functions in 6 variables. Then $F \stackrel{\text{EA}}{\sim} F'$ iff $\operatorname{dev}(G_F) \cong \operatorname{dev}(G_{F'})$.

Alexandr Polujan (Magdeburg)

Conclusion and Future Work

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Vos. for all avon a
$m \ge 2$: Vectorial case	?	res, for all even n

Alexandr Polujan (Magdeburg)

Conclusion and Future Work

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m?$	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Voc. for all even n
$m \ge 2$: Vectorial case	Yes, for $n = 6$	

Alexandr Polujan (Magdeburg)

Conclusion and Future Work

Does isomorphism of designs coincide with EA-equivalence for bent functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$?	Translation Designs $\operatorname{dev}(G_F)$	Addition Designs $\mathbb{D}(F)$
m = 1: Boolean case	No, isomorphism is more general for all $n \ge 6$	Vos. for all even n
$m \ge 2$: Vectorial case	Conjecture Yes, for all even $n \ge 6$	

Open Problem 1

Attack the conjecture!

Alexandr Polujan (Magdeburg)

Design-theoretic aspects of vectorial bent functions

Alexandr Polujan joint work with Alexander Pott

Otto von Guericke University Magdeburg, Germany

KolKom 2019 Paderborn, Germany November 9, 2019

Further Reading I

- [BC09] Lilya Budaghyan and Claude Carlet. "CCZ-equivalence and Boolean functions". In: 2009 (Jan. 2009), p. 63 (cit. on pp. 36–41).
- [Ben93] Th. D. Bending. "Bent Functions, SDP Designs and their Automorphism Groups". PhD thesis. Queen Mary and Westfield College, Nov. 1993 (cit. on pp. 25–29, 42–45).
- [Bro+09] K. A. Browning, J. F. Dillon, R. E. Kibler and M. T. McQuistan. "APN polynomials and related codes". In: Special volume of Journal of Combinatorics, Information and System Sciences 34 (2009), pp. 135–159 (cit. on pp. 36–41).

Further Reading II

[DMT19] C. Ding, A. Munemasa and V. D. Tonchev. "Bent Vectorial Functions, Codes and Designs". In: IEEE Transactions on Information Theory (2019). DOI: 10.1109/TIT.2019.2922401 (cit. on pp. 25–41).

[JJ87] J.F.Dillon and J.R.Schatz. "Block designs with the symmetric difference property". In: R.L. Ward (Ed.), Proc. NSA Mathematical Sciences Meetings, U.S. Government Printing Office, Washington, DC (1987), pp. 159–164 (cit. on pp. 25–29).

[Kan75]

William M Kantor. "Symplectic groups, symmetric designs, and line ovals". In: Journal of Algebra 33.1 (1975), pp. 43–58. ISSN: 0021-8693. DOI: http: //dx.doi.org/10.1016/0021-8693(75)90130-1 (cit. on pp. 25–29).

Further Reading III

[Kan83] William M. Kantor. "Exponential Numbers of Two-weight Codes, Difference Sets and Symmetric Designs". In: Discrete Math. 46.1 (Jan. 1983), pp. 95–98. DOI: http://dx.doi.org/10.1016/0012-365X(83)90276-5 (cit. on pp. 25–29).

[KP13]

Alexander Kholosha and Alexander Pott. "Bent and related functions". In: *Handbook of Finite Fields*. Ed. by Gary L. Mullen and Daniel Panario. 1st. Chapman & Hall/CRC, 2013, pp. 262–273. DOI: https://doi.org/10.1201/b15006 (cit. on pp. 46–50).