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Boolean and Vectorial Functions

I F2 = {0, 1}: Finite field with 2 elements.

I Fn
2 : Vector space over F2 of dimension n.

I We consider mappings F : Fn
2 → Fm

2 , particularly:

Single-output (m = 1) case: Boolean functions.
Multi-output (m ≥ 2) case: Vectorial functions.

I We identify a vectorial function F : Fn
2 → Fm

2 with m
coordinate Boolean functions in the following way:

F (x1, . . . , xn) =


f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
fm(x1, . . . , xn)

 .

I We are interested in bent = perfect nonlinear functions.
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Boolean Bent Functions

I A Boolean function f : Fn
2 → F2 is called bent if the equation

f(x+ a)− f(x) = b

has 2n−1 solutions for all a 6= 0 and any b.

I They exist if and only if n is even.

Example 1

A function F : Fn
2 → F2, given by

f(x1, . . . , xn) = x1x2 + x3x4 + · · ·+ xn−1xn

is bent.
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Vectorial Bent Functions

I A function F : Fn
2 → Fm

2 is vectorial bent if

f(x+ a)− f(x) = b

has 2n−m solutions for all a 6= 0 and all b.

I They exist if and only if n is even and m ≤ n/2.

I Vectorial bent functions are m-dimensional vector spaces of
Boolean bent functions.

Example 2 (The Maiorana-McFarland Construction)

A function F : Fn/2
2 × Fn/2

2 → Fm
2 , given by

F (x, y) := L(x · π(y)) +G(y)

is vectorial bent if L is any affine function from Fn/2
2 onto Fm

2 ,

π is an permutation of Fn/2
2 and G is any function on Fn/2

2 .
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Designs and Divisible Designs

I P is a set of points and B is a set of blocks.

I The pair D = (P,B) is called a t-(v, k, λ) design, if:

|P| = v;
B is a collection of k-subsets of P;
Every t-subset of P is contained in exactly λ blocks of B.

I The pair D = (P,B) is called a (µ, ν, k, λ) divisible design, if:

|P| = µ · ν, the point set is divided into µ point classes of size
ν each;
B is a collection of k-subsets of P;
Any two distinct points, which are not equivalent, are
contained in exactly λ blocks;
Any two distinct points, which are equivalent, are not
contained in a block.
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I. Translation Designs of Bent Functions

I For a subset B of an additive group (G,+) the development
of B is an incidence structure dev(B) = (P,B) with

P = {g : g ∈ G} and B = {Bg : Bg = {b+ g : b ∈ B}}.

I The graph GF ⊂ Fn+m
2 of a function F : Fn

2 → Fm
2 , is the set

GF :=

(
. . . x . . .
. . . F (x) . . .

)
x∈Fn

2

.

I Boolean bent case f : Fn
2 → F2.

dev(Gf ) is a
(
2n, 21, 2n, 2n−1

)
divisible design.

I Vectorial bent case F : Fn
2 → Fm

2 .

dev(GF ) is a (2n, 2m, 2n, 2n−m) divisible design.
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II. Addition Designs of Bent Functions

I Consider a linear code C(F ) with generator matrix, given by 1 . . . 1
. . . x . . .
. . . F (x) . . .


x∈Fn

2

.

I Design D(F ) = (P,B) is formed by words of minimum weight:

P = {x : x ∈ Fn
2} and B = {supp(f) : f ∈ C(F ),wt(f) = wmin}.

I For a bent function wmin = 2n−1 − 2n/2−1.

I Boolean bent case f : Fn
2 → F2.

D(f) is a 2-(2n, 2n−1 − 2n/2−1, λ = 2n−2 − 2n/2−1) design.

I Vectorial bent case F : Fn
2 → Fm

2 .

D(F ) is a 2-(2n, 2n−1 − 2n/2−1, λ · (2m − 1)) design.
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Equivalence of Functions and Isomorphism of Designs

I Functions F, F ′ : Fn
2 → Fm

2 are EA-equivalent F
EA∼ F ′, if

∃ affine permutations L1 of Fn
2 and L2 of Fm

2 , s.t.

F = L2 ◦ F ′ ◦ L1.

I Designs D and D′ with incidence matrices M and M ′ are
isomorphic D ∼= D′, if ∃ permutation matrices P1 and P2, s.t.

M = P2 M
′ P1.

I Main Question: Does isomorphism of translation and addition
designs coincide with EA-equivalence of bent functions?
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EA-Equivalence and Isomorphism of Designs

Result 1 (Folklore)

Let F, F ′ : Fn
2 → Fm

2 be bent. F
EA∼ F ′ ⇒ dev(GF ) ∼= dev(GF ′).

I Boolean bent case: f
EA∼ f ′ : dev(Gf ) ∼= dev(Gf ′).

I Vectorial bent case: F
EA∼ F ′ ?⇐ dev(GF ) ∼= dev(GF ′).

Result 2 (Kantor 1983; Dillon and Schatz 1987; Bending 1993)

Let f, f ′ : Fn
2 → F2 be Boolean bent. f

EA∼ f ′ ⇐⇒ D(f) ∼= D(f ′).

I Boolean bent case: Were introduced by Kantor in 1975.

I Vectorial bent case: Were introduced by Ding, Munemasa and
Tonchev in 2019.

I Vectorial bent case: F
EA∼ F ′ ?⇐⇒ D(F ) ∼= D(F ′).
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Two Problems: Boolean vs. Vectorial Case

1. The conjecture of Ding, Munemasa and Tonchev 2019.
Addition designs of Boolean and vectorial bent functions
behave in the same way.

X

2. Translation designs of vectorial bent functions.
Nothing is known for n ≥ 6.

X
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1. The Conjecture of Ding, Munemasa and Tonchev 2019

I Functions F, F ′ : Fn
2 → Fm

2 are called CCZ-equivalent, if there
exists an affine permutation L of Fn

2 × Fm
2 s.t. L (GF ) = GF ′ .

I CCZ-equivalence is code equivalence.

F
CCZ∼ F ′ ⇐⇒ C(F ) code∼ C(F ′) Dillon, B., K., M. 2009

F,F’ are bent⇐⇒ D(F ) ∼= D(F ′) Ding, M., T. 2019

F
CCZ∼ F ′ F,F’ are bent⇐⇒ F

EA∼ F ′ Budaghyan, Carlet 2009
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The Conjecture is True

Theorem 1

Let F, F ′ : Fn
2 → Fm

2 be vectorial bent. Then F
EA∼ F ′ iff their

addition designs D(F ) ∼= D(F ′).

I A technical proof: see the thesis of Bending 1993.
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2. Translation Designs of Vectorial Bent Functions

I All Boolean bent functions in 6 variables form:

4 EA-equivalence classes;
3 Non-isomorphic designs dev(Gf ).

I Example (Kholosha and Pott 2013)

x1x4 + x2x5 + x3x6 and x1x4 + x2x5 + x3x6 + x4x5x6.

I Problem: The classification of vectorial bent functions in 6
variables is not known.
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Classification and Count of Vectorial Bent Functions on F6
2

(n,m) # of Bent Functions F : Fn
2 → Fm

2 # of EA-eq. Classes # of Isom. Classes

(6, 1) 5,425,430,528 ≈ 232.33 4 3
(6, 2) 23,392,233,361,244,160 ≈ 254.37 9 9
(6, 3) 121,282,113,886,947,901,440 ≈ 266.71 13 13

Theorem 2

Let F, F ′ be vectorial bent functions in 6 variables. Then F
EA∼ F ′

iff dev(GF ) ∼= dev(GF ′).
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Conclusion and Future Work

Open Problem 1

Attack the conjecture!
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