A lower bound on the total number of CCZ-inequivalent APN functions

Christian Kaspers joint work with Yue "Joe" Zhou (Changsha)

Otto von Guericke University Magdeburg

Paderborn, November 9, 2019

Vectorial boolean functions

A vectorial boolean function is a function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$. We are interested in functions $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$.

A function f on \mathbb{F}_2^4 represented by its graph:

x	0000	1000	0100	1100	0010	1010	0110	1110
$f(\mathbf{x})$	0000	0100	0100	0100	1000	1110	1101	1111
x	0001	1001	0101	1101	0011	1011	0111	1111
$f(\mathbf{x})$	1000	1101	1111	1110	1000	1111	1110	1101

Representations of vectorial boolean functions

The same function f in

coordinate function representation:

$$f\begin{pmatrix}x_1\\x_2\\x_3\\x_4\end{pmatrix} = \begin{pmatrix}x_3x_4 + x_3 + x_4\\x_1x_2 + x_1 + x_2\\x_1x_3 + x_2x_4\\x_1x_4 + x_2x_3 + x_2x_4\end{pmatrix}$$

algebraic degree of f: largest degree of all the coordinate functions
f has algebraic degree 2. The function is quadratic.

Representations of vectorial boolean functions

The same function f in

coordinate function representation:

$$F\begin{pmatrix}x_1\\x_2\\x_3\\x_4\end{pmatrix} = \begin{pmatrix}x_3x_4 + x_3 + x_4\\x_1x_2 + x_1 + x_2\\x_1x_3 + x_2x_4\\x_1x_4 + x_2x_3 + x_2x_4\end{pmatrix}$$

algebraic degree of f: largest degree of all the coordinate functions
f has algebraic degree 2. The function is quadratic.

• univariate representation on \mathbb{F}_{2^4} , where *u* is primitive in \mathbb{F}_{2^4} :

$$f(x) = ux^{12} + u^{14}x^9 + u^8x^8 + u^9x^6 + u^5x^5 + u^{10}x^3 + u^8x^2 + ux$$

Representations of vectorial boolean functions

The same function f in

coordinate function representation:

$$f\begin{pmatrix}x_1\\x_2\\x_3\\x_4\end{pmatrix} = \begin{pmatrix}x_3x_4 + x_3 + x_4\\x_1x_2 + x_1 + x_2\\x_1x_3 + x_2x_4\\x_1x_4 + x_2x_3 + x_2x_4\end{pmatrix}$$

algebraic degree of f: largest degree of all the coordinate functions
f has algebraic degree 2. The function is quadratic.

• univariate representation on \mathbb{F}_{2^4} , where *u* is primitive in \mathbb{F}_{2^4} :

$$f(x) = ux^{12} + u^{14}x^9 + u^8x^8 + u^9x^6 + u^5x^5 + u^{10}x^3 + u^8x^2 + ux$$

• bivariate representation on $\mathbb{F}_{2^2} \times \mathbb{F}_{2^2}$, where u' is primitive in \mathbb{F}_{2^2} :

$$f(x,y) = \left(x^3 + u'y^3, xy\right)$$

Almost perfect nonlinear (APN) functions

Definition

A function $f : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is called almost perfect nonlinear (APN) if the equation

$$f(x+a)-f(x)=b$$

has 0 or 2 solutions for all $a, b \in \mathbb{F}_{2^n}$, where $a \neq 0$.

Why are people interested in APN functions?

- Cryptography: APN functions offer the best resistance possible to the differential attack
- Applications in coding theory, projective geometry, semifield theory

For more background, see the survey by Pott (2016).

(Open) problems regarding APN functions

1 Find another APN permutation on \mathbb{F}_{2^n} , where *n* is even.

- So far, only one is known: for n = 6 (Dillon 2009).
- **2** Establish a lower bound on the number of inequivalent APN functions.
 - Several infinite families are known, however it is often not clear if APN functions
 - within one class or
 - from different classes are mutually inequivalent.
- **3** Find more non-quadratic APN functions.
 - No progress since 2006.

(Open) problems regarding APN functions

- 2 Establish a lower bound on the number of inequivalent APN functions.
 - Several infinite families are known, however it is often not clear if APN functions
 - within one class or
 - from different classes

are mutually inequivalent.

Notions of equivalence of APN functions

Two functions $f, g: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are called

- CCZ-equivalent if there exists an affine permutation C on F_{2ⁿ} × F_{2ⁿ} that maps the graph of f onto the graph of g,
- EA-equivalent if there exist affine functions $A_1, A_2, A_3 : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, where A_1 and A_2 are permutations, such that

$$f(A_1(x)) = A_2(g(x)) + A_3(x).$$

Notions of equivalence of APN functions

Two functions $f, g: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ are called

- CCZ-equivalent if there exists an affine permutation C on 𝔽_{2ⁿ} × 𝔽_{2ⁿ} that maps the graph of f onto the graph of g,
- EA-equivalent if there exist affine functions $A_1, A_2, A_3 : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$, where A_1 and A_2 are permutations, such that

$$f(A_1(x)) = A_2(g(x)) + A_3(x).$$

in general: EA-equivalence \implies CCZ-equivalence. However:

Theorem (Yoshiara 2012)

For two quadratic APN functions f and g: EA-equivalence $\iff CCZ$ -equivalence.

Known classes of APN power functions $x \mapsto x^d$ on \mathbb{F}_{2^n}

	Exponent d	Conditions
Gold	$2^{k} + 1$	gcd(k, n) = 1
Kasami	$2^{2k} - 2^k + 1$	gcd(k, n) = 1
Welch	$2^{k} + 3$	n = 2k + 1
Niho	$2^k + 2^{rac{k}{2}} - 1$, k even	n = 2k + 1
	$2^k + 2^{\frac{3k+1}{2}} - 1$, k odd	n = 2k + 1
Inverse	$2^{2k} - 1$	n = 2k + 1
Dobbertin	$2^{4k} + 2^{3k} + 2^{2k} + 2^k - 1$	n = 5k

 The equivalence problem is well-studied: in general, the APN power functions are inequivalent.

Known classes of APN non-power functions

N°	Functions	Conditions	In
		$n=pk,\ \mathrm{gcd}(k,p){=}\ \mathrm{gcd}(s,pk){=}1,$	
F1-F2	$x^{2^{s}+1} + u^{2^{\kappa}-1}x^{2^{i\kappa}+2^{m\kappa+s}}$	$p \in \{3, 4\}, i = sk \mod p, m = p - i,$	[8]
		$n \ge 12, u$ primitive in $\mathbb{F}_{2^n}^*$	
		$q = 2^m, n = 2m, \gcd(i, m) = 1,$	
F3	$sx^{q+1} + x^{2^{i}+1} + x^{q(2^{i}+1)}$	$c \in \mathbb{F}_{2^n}, s \in \mathbb{F}_{2^n} \setminus \mathbb{F}_q,$	[7]
	$+cx^{2^{i}q+1}+c^{q}x^{2^{i}+q}$	$X^{2^i+1} + cX^{2^i} + c^qX + 1$	
		has no solution x s.t. $x^{q+1} = 1$	
F4	$x^3 + a^{-1} \operatorname{Tr}(a^3 x^9)$	$a \neq 0$	[10]
F5	$x^3 + a^{-1} Tr_n^3 (a^3 x^9 + a^6 x^{18})$	$3 n, a \neq 0$	[11]
F6	$x^3 + a^{-1} Tr_n^3 (a^6 x^{18} + a^{12} x^{36})$	$3 n, a \neq 0$	[11]
		n = 3k, $gcd(k, 3) = gcd(s, 3k) = 1$,	
F7-F9	$ux^{2^{s}+1} + u^{2^{k}}x^{2^{-k}+2^{k+s}} +$	$v, w \in \mathbb{F}_{2^k}, vw \neq 1$,	[2, 3]
	$vx^{2^{-k}+1} + wu^{2^{k}+1}x^{2^{s}+2^{k+s}}$	$3 (k+s) u$ primitive in $\mathbb{F}_{2^n}^*$	
	$(x + x^{2^m})^{2^i + 1} +$	$n = 2m, m \ge 2$ even,	
F10	$u'(ux + u^{2^m}x^{2^m})^{(2^i+1)2^j} +$	$gcd(i,m) = 1$ and $j \ge 2$ even	[29]
	$u(x+x^{2^m})(ux+u^{2^m}x^{2^m})$	u primitive in $\mathbb{F}_{2^n}^*, u'\in\mathbb{F}_{2^m}$ not a cube	
	$a^2x^{2^{2m+1}+1} + b^2x^{2^{m+1}+1} + b^2x^{2^{m$	n = 3m, m odd	
F11	$ax^{2^{2m}+2} + bx^{2^m+2} + (c^2 + c)x^3$	$L(x) = ax^{2^{2m}} + bx^{2^m} + cx \text{ satisfies}$	[6]
		the conditions in Theorem 6.3 of $\left[6\right]$	
	$u(u^{q}x + x^{q}u)(x^{q} + x) + (u^{q}x + x^{q}u)^{2^{2i} + 2^{3i}}$	$q=2^m,n=2m,\gcd(i,m){=}1$	
F12	$+a(u^{q}x + x^{q}u)^{2^{2i}}(x^{q} + x)^{2^{i}} + b(x^{q} + x)^{2^{i}+1}$	$X^{2^i+1} + aX + b$	[27]
Table b	y Budaghyan, Calderini, and Villa (2019)	has no solution over \mathbb{F}_{2^m}	

It is not much known about the equivalence problem.

Known classes of APN non-power functions

N°	Functions	Conditions	In
F1-F2	$x^{2^{s}+1} + u^{2^{k}-1}x^{2^{ik}+2^{mk+s}}$	$n = pk, \operatorname{gcd}(k, p) = \operatorname{gcd}(s, pk) = 1,$ $p \in \{3, 4\}, \ i = sk \mod p, \ m = p - i,$ $n \ge 12, \ \mu \text{ primitive in } \mathbb{F}_{s}^{*}.$	[8]
F3	$\begin{array}{l} sx^{q+1}+x^{2^i+1}+x^{q(2^i+1)}\\ +cx^{2^iq+1}+c^qx^{2^i+q} \end{array}$	$q = 2^{m}, n = 2m, \text{gcd}(i, m) = 1,$ $c \in \mathbb{F}_{2^{n}}, s \in \mathbb{F}_{2^{n}} \setminus \mathbb{F}_{q},$ $X^{2^{i+1}} + cX^{2^{i}} + c^{q}X + 1$	[7]
E4	$m^3 + a^{-1} T_{9}(a^3 m^9)$	has no solution x s.t. $x^{q+\star} = 1$	[10]
F5	$\frac{x^{3} + a^{-1}Tt^{3}(a^{3}x^{9} + a^{6}x^{18})}{x^{3} + a^{-1}Tt^{3}(a^{3}x^{9} + a^{6}x^{18})}$	$a \neq 0$ $3 n, a \neq 0$	[11]
F6	$\frac{x^3 + a^{-1} Tr_n^2 (a^6 x^{18} + a^{12} x^{36})}{x^3 + a^{-1} Tr_n^2 (a^6 x^{18} + a^{12} x^{36})}$	$3 n, a \neq 0$	[11]
F7-F9	$ux^{2^{s}+1} + u^{2^{k}}x^{2^{-k}+2^{k+s}} + vx^{2^{-k}+1} + wu^{2^{k}+1}x^{2^{s}+2^{k+s}}$	$n = 3k, \gcd(k, 3) = \gcd(s, 3k) = 1,$ $v, w \in \mathbb{F}_{2^k}, vw \neq 1,$ $3 (k+s) \ u \text{ primitive in } \mathbb{F}_{2^n}^*$	[2, 3]
F10	$(x + x^{2^m})^{2^i+1} + u'(ux + u^{2^m}x^{2^m})^{(2^i+1)2^j} + u(x + x^{2^m})(ux + u^{2^m}x^{2^m})$	$\begin{split} n &= 2m, m \geq 2 \text{ even},\\ & \gcd(i,m) = 1 \text{ and } j \geq 2 \text{ even}\\ u \text{ primitive in } \mathbb{F}_{2^n}^*, u' \in \mathbb{F}_{2^m} \text{ not a cube} \end{split}$	[29]
F11	$\frac{a^2x^{2^{2m+1}+1} + b^2x^{2^{m+1}+1} +}{ax^{2^{2m}+2} + bx^{2^{m}+2} + (c^2 + c)x^3}$	$n = 3m, m \text{ odd}$ $L(x) = ax^{2^{2m}} + bx^{2^m} + cx \text{ satisfies}$ the conditions in Theorem 6.3 of [6]	[6]
F12 Table b	$\begin{array}{l} u(u^qx+x^qu)(x^q+x)+(u^qx+x^qu)^{2^{2i}+2^{3i}}\\ +a(u^qx+x^qu)^{2^{2i}}(x^q+x)^{2^i}+b(x^q+x)^{2^i+1}\\ {\rm y} \; {\rm Budaghyan,\; Calderini,\; and\; Villa\; (2019)} \end{array}$	$q = 2^m, n = 2m, \operatorname{gcd}(i, m) = 1$ $X^{2^i+1} + aX + b$ has no solution over \mathbb{F}_{2^m}	[27]

It is not much known about the equivalence problem.

Pott-Zhou APN functions

Theorem (Zhou and Pott 2013)

Let m be even and let k, s be integers, 0 < k < m and $0 \le s \le m$, such that gcd(k, m) = 1. Let $\alpha \in \mathbb{F}_{2^m}^*$.

The function $f_{k,s,\alpha}: \mathbb{F}_{2^{2m}} \to \mathbb{F}_{2^{2m}}$ defined as

$$f_{k,s,\alpha}(x,y) = \left(x^{2^{k}+1} + \alpha y^{(2^{k}+1)2^{s}}, xy\right)$$

is APN if s is even and α is a non-cube.

9/17

Pott-Zhou APN functions

Theorem (Zhou and Pott 2013 and Anbar, Kalayci, and Meidl 2019)

Let m be even and let k, s be integers, 0 < k < m and $0 \le s \le m$, such that gcd(k, m) = 1. Let $\alpha \in \mathbb{F}_{2^m}^*$.

The function $f_{k,s,\alpha} : \mathbb{F}_{2^{2m}} \to \mathbb{F}_{2^{2m}}$ defined as

$$f_{k,s,\alpha}(x,y) = \left(x^{2^{k}+1} + \alpha y^{(2^{k}+1)2^{s}}, xy\right)$$

is APN if and only if s is even and α is a non-cube.

9/17

Pott-Zhou APN functions

Theorem (Zhou and Pott 2013 and Anbar, Kalaycı, and Meidl 2019)

Let m be even and let k, s be integers, 0 < k < m and $0 \le s \le m$, such that gcd(k, m) = 1. Let $\alpha \in \mathbb{F}_{2^m}^*$.

The function $f_{k,s,\alpha} : \mathbb{F}_{2^{2m}} \to \mathbb{F}_{2^{2m}}$ defined as

$$f_{k,s,\alpha}(x,y) = \left(x^{2^{k}+1} + \alpha y^{(2^{k}+1)2^{s}}, xy\right)$$

is APN if and only if ${\bf s}$ is even and α is a non-cube.

• *f* from the beginning is the Pott-Zhou APN function $f_{1,0,u'}$ on \mathbb{F}_{2^4} :

$$f_{1,0,u'}(x,y) = (x^{2^1+1} + u'y^{(2^1+1)2^0}, xy)$$

Pott-Zhou functions have two relevant parameters: k and s.

Pott-Zhou functions are quadratic.

Our goal

Show that there exist many CCZ-inequivalent APN functions on $\mathbb{F}_{2^{2m}}$ by studying for which parameters k, s, α and ℓ, t, β the functions $f_{k,s,\alpha}$ and $f_{\ell,t,\beta}$, where

$$f_{k,s,\alpha}(x,y) = \left(x^{2^k+1} + \alpha y^{(2^k+1)2^s}, xy\right)$$

and

$$f_{\ell,t,\beta}(x,y) = \left(x^{2^{\ell}+1} + \beta y^{(2^{\ell}+1)2^t}, xy\right),$$

are CCZ-equivalent.

Our goal

Show that there exist many CCZ-inequivalent APN functions on $\mathbb{F}_{2^{2m}}$ by studying for which parameters k, s, α and ℓ, t, β the functions $f_{k,s,\alpha}$ and $f_{\ell,t,\beta}$, where

$$f_{k,s,\alpha}(x,y) = \left(x^{2^k+1} + \alpha y^{(2^k+1)2^s}, xy\right)$$

and

$$f_{\ell,t,\beta}(x,y) = \left(x^{2^{\ell}+1} + \beta y^{(2^{\ell}+1)2^{t}}, xy\right),$$

are CCZ-equivalent.

Computational results about the number of inequivalent Pott-Zhou APNs:

m	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32
#	1	2	?	?	?	?	?	?	?	?	?	?	?	?	?	?

A first step: some trivial equivalences

Lemma (Zhou and K. (20xx))

Let m be an even integer. Let k, ℓ be integers coprime to m such that $0 < k, \ell < m$, and let s, t be even integers, $0 \le s, t \le m$. Let α, β be non-cubes in $\mathbb{F}_{2^m}^*$.

The two Pott-Zhou APN functions $f_{k,s,\alpha}, f_{\ell,t,\beta} : \mathbb{F}_{2^{2m}} \to \mathbb{F}_{2^{2m}}$ are CCZ-equivalent

1 if $k = \ell$ and s = t, no matter which non-cubes α and β we choose,

2 if $k \equiv \pm \ell \pmod{m}$ and $s \equiv \pm t \pmod{m}$.

Since the choice of α does not matter, we write f_{k,s} instead of f_{k,s,α}.
From now on we only consider k, s ≤ m/2.

Our main theorem: the not so trivial part

Theorem (Zhou and K. (20xx))

Let $m \ge 4$ be an even integer. Let k, ℓ be integers coprime to m such that $0 < k, \ell < \frac{m}{2}$, and let s, t be even integers, $0 \le s, t \le \frac{m}{2}$.

The Pott-Zhou APN functions $f_{k,s}, f_{\ell,t} : \mathbb{F}_{2^{2m}} \to \mathbb{F}_{2^{2m}}$ are CCZ-equivalent if and only if $k = \ell$ and s = t.

12/17

Our main theorem: the not so trivial part

Theorem (Zhou and K. (20xx))

Let $m \ge 4$ be an even integer. Let k, ℓ be integers coprime to m such that $0 < k, \ell < \frac{m}{2}$, and let s, t be even integers, $0 \le s, t \le \frac{m}{2}$.

The Pott-Zhou APN functions $f_{k,s}$, $f_{\ell,t} : \mathbb{F}_{2^{2m}} \to \mathbb{F}_{2^{2m}}$ are CCZ-equivalent if and only if $k = \ell$ and s = t.

- If m = 2, up to equivalence, there exists only one function: $f_{1,0}$. It is actually EA-equivalent to the Gold APN function $x \mapsto x^3$.
- Since $f_{k,s}$ is quadratic, it is sufficient to show EA-equivalence.

Sketch of the proof

 $f_{k,s}$ and $f_{\ell,t}$ are EA-equivalent if there exist linearized polynomials $L_A(X, Y), L_B(X, Y), M_A(X, Y), M_B(X, Y) \in \mathbb{F}_{2^m}[X, Y]$ and $N_1(X), \ldots, N_4(X) \in \mathbb{F}_{2^m}[X]$ such that

$$L_A(x,y)^{2^{k}+1} + \alpha L_B(x,y)^{(2^{k}+1)2^{s}} = N_1(x^{2^{\ell}+1} + \alpha y^{(2^{\ell}+1)2^{t}}) + N_3(xy) + M_A(x,y),$$

$$L_A(x,y)L_B(x,y) = N_2(x^{2^{\ell}+1} + \alpha y^{(2^{\ell}+1)2^{t}}) + N_4(xy) + M_B(x,y)$$

holds for all $x, y \in \mathbb{F}_{2^m}$.

We show that there only exist such polynomials if $k = \ell$ and s = t. Moreover, we show that in this case, L_A and L_B are linearized monomials of the same degree.

- Show that the equivalence mappings between Gold APN functions are linearized monomials.
- **2** Show that $f_{k,s}$ and $f_{\ell,t}$ can only be equivalent if $k = \ell$.
- **3** Show that $f_{k,s}$ and $f_{k,t}$ are equivalent if s = t.

Lower bound on the number of inequivalent APN functions

Corollary (Zhou and K. (20xx))

On $\mathbb{F}_{2^{2m}}$, where $m \geq 4$ is even, the number of CCZ-inequivalent Pott-Zhou APN functions is

$$\left(\left\lfloor \frac{m}{4} \right\rfloor + 1\right) \frac{\varphi(m)}{2},$$

where φ denotes Euler's phi function.

Lower bound on the number of inequivalent APN functions

Corollary (Zhou and K. (20xx))

On $\mathbb{F}_{2^{2m}},$ where $m\geq 4$ is even, the number of CCZ-inequivalent Pott-Zhou APN functions is

$$\left(\left\lfloor \frac{m}{4} \right\rfloor + 1\right) \frac{\varphi(m)}{2},$$

where φ denotes Euler's phi function.

- We have $\left(\left|\frac{m}{4}\right|+1\right)$ choices for s and $\frac{\varphi(m)}{2}$ choices for k.
- Number of functions for small *m*:

m	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32
#	1	2	2	6	6	8	12	20	15	24	30	28	42	48	32	72

(red cases can be checked computationally by computing the Γ -rank)

Number of Pott-Zhou APN functions in $\mathbb{F}_{2^{2m}}$, *m* even

Number of Pott-Zhou APN functions in $\mathbb{F}_{2^{2m}}$, *m* even

Number of Pott-Zhou APN functions in $\mathbb{F}_{2^{2m}}$, *m* even

Automorphism group of the Pott-Zhou APN functions

Corollary (Zhou and K. (20xx))

Let $f_{k,s}$ be a Pott-Zhou APN function on $\mathbb{F}_{2^{2m}}$. If $m \geq 4$, then

$$|{\sf Aut}(f_{k,s})| = egin{cases} 3m2^{2m}(2^m-1) & \textit{if } s \in \{0, rac{m}{2}\},\ 3m2^{2m-1}(2^m-1) & \textit{otherwise.} \end{cases}$$

If m = 2, then

$$|\operatorname{Aut}(f_{1,0})| = |\operatorname{Aut}(x^3)| = 5760$$

which was first shown by Berger and Charpin (1996).

• Count the possible equivalence mappings of $f_{k,s}$.

Outlook

We have established a first lower bound on the total number of CCZ-inequivalent APN functions on $\mathbb{F}_{2^{2m}}$, where *m* is even. However, there is still work to be done:

- Improve this lower bound.
- Establish a lower bound for functions on \mathbb{F}_{2^n} where $n \nmid 4$.
- Clean up the known constructions.
- And, of course, find another APN permutation on \mathbb{F}_{2^n} where *n* is even.

References I

- N. Anbar, T. Kalaycı, and W. Meidl. Determining the Walsh spectra of Taniguchi's and related APN-functions. In: <u>Finite Fields and Their Applications</u> 60 (2019), p. 101577. URL: http://www.sciencedirect.com/science/article/pii/ S1071579719300802.
- T. P. Berger and P. Charpin. The permutation group of affine-invariant extended cyclic codes. In: <u>IEEE Trans. Inform. Theory</u> 42.6, part 2 (1996), pp. 2194–2209. URL: https://doi.org/10.1109/18.556607.
 - L. Budaghyan, M. Calderini, and I. Villa. On equivalence between known families of quadratic APN functions. Cryptology ePrint Archive, Report 2019/793. 2019. URL: https://eprint.iacr.org/2019/793.

References II

- A. Pott. Almost Perfect and Planar Functions. In: Des. Codes Cryptography 78.1 (2016), pp. 141–195. URL: http://dx.doi.org/10.1007/s10623-015-0151-x.
- S. Yoshiara. Equivalences of quadratic APN functions. In: Journal of Algebraic Combinatorics 35.3 (2012), pp. 461–475. URL: https://doi.org/10.1007/s10801-011-0309-1.
 - Y. Zhou and A. Pott. A new family of semifields with 2 parameters. In: <u>Advances in Mathematics</u> 234 (2013), pp. 43-60. URL: http://www.sciencedirect.com/science/article/pii/ S0001870812004057.