A lower bound on the total number of CCZ-inequivalent APN functions

Christian Kaspers joint work with Yue "Joe" Zhou (Changsha)
Otto von Guericke University Magdeburg

Paderborn, November 9, 2019

Vectorial boolean functions

A vectorial boolean function is a function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$. We are interested in functions $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$.

A function f on \mathbb{F}_{2}^{4} represented by its graph:

\mathbf{x}	0000	1000	0100	1100	0010	1010	0110	1110
$f(\mathbf{x})$	0000	0100	0100	0100	1000	1110	1101	1111
\mathbf{x}	0001	1001	0101	1101	0011	1011	0111	1111
$f(\mathbf{x})$	1000	1101	1111	1110	1000	1111	1110	1101

Representations of vectorial boolean functions

The same function f in

- coordinate function representation:

$$
f\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{3} x_{4}+x_{3}+x_{4} \\
x_{1} x_{2}+x_{1}+x_{2} \\
x_{1} x_{3}+x_{2} x_{4} \\
x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}
\end{array}\right)
$$

- algebraic degree of f : largest degree of all the coordinate functions
- f has algebraic degree 2. The function is quadratic.

Representations of vectorial boolean functions

The same function f in

- coordinate function representation:

$$
f\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{3} x_{4}+x_{3}+x_{4} \\
x_{1} x_{2}+x_{1}+x_{2} \\
x_{1} x_{3}+x_{2} x_{4} \\
x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}
\end{array}\right)
$$

- algebraic degree of f : largest degree of all the coordinate functions - f has algebraic degree 2 . The function is quadratic.

■ univariate representation on $\mathbb{F}_{2^{4}}$, where u is primitive in $\mathbb{F}_{2^{4}}$:

$$
f(x)=u x^{12}+u^{14} x^{9}+u^{8} x^{8}+u^{9} x^{6}+u^{5} x^{5}+u^{10} x^{3}+u^{8} x^{2}+u x
$$

Representations of vectorial boolean functions

The same function f in

- coordinate function representation:

$$
f\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{3} x_{4}+x_{3}+x_{4} \\
x_{1} x_{2}+x_{1}+x_{2} \\
x_{1} x_{3}+x_{2} x_{4} \\
x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}
\end{array}\right)
$$

- algebraic degree of f : largest degree of all the coordinate functions - f has algebraic degree 2 . The function is quadratic.

■ univariate representation on $\mathbb{F}_{2^{4}}$, where u is primitive in $\mathbb{F}_{2^{4}}$:

$$
f(x)=u x^{12}+u^{14} x^{9}+u^{8} x^{8}+u^{9} x^{6}+u^{5} x^{5}+u^{10} x^{3}+u^{8} x^{2}+u x
$$

■ bivariate representation on $\mathbb{F}_{2^{2}} \times \mathbb{F}_{2^{2}}$, where u^{\prime} is primitive in $\mathbb{F}_{2^{2}}$:

$$
f(x, y)=\left(x^{3}+u^{\prime} y^{3}, x y\right)
$$

Almost perfect nonlinear (APN) functions

Definition

A function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is called almost perfect nonlinear (APN) if the equation

$$
f(x+a)-f(x)=b
$$

has 0 or 2 solutions for all $a, b \in \mathbb{F}_{2^{n}}$, where $a \neq 0$.

Why are people interested in APN functions?
■ Cryptography: APN functions offer the best resistance possible to the differential attack

■ Applications in coding theory, projective geometry, semifield theory
For more background, see the survey by Pott (2016).

(Open) problems regarding APN functions

1 Find another APN permutation on $\mathbb{F}_{2^{n}}$, where n is even.

- So far, only one is known: for $n=6$ (Dillon 2009).

2 Establish a lower bound on the number of inequivalent APN functions.

- Several infinite families are known, however it is often not clear if APN functions
- within one class or
- from different classes
are mutually inequivalent.
3 Find more non-quadratic APN functions.
- No progress since 2006.

(Open) problems regarding APN functions

2 Establish a lower bound on the number of inequivalent APN functions.

- Several infinite families are known, however it is often not clear if APN functions
- within one class or
- from different classes
are mutually inequivalent.

Notions of equivalence of APN functions

Two functions $f, g: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ are called
■ CCZ-equivalent if there exists an affine permutation C on $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$ that maps the graph of f onto the graph of g,

■ EA-equivalent if there exist affine functions $A_{1}, A_{2}, A_{3}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$, where A_{1} and A_{2} are permutations, such that

$$
f\left(A_{1}(x)\right)=A_{2}(g(x))+A_{3}(x) .
$$

Notions of equivalence of APN functions

Two functions $f, g: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ are called
■ CCZ-equivalent if there exists an affine permutation C on $\mathbb{F}_{2^{n}} \times \mathbb{F}_{2^{n}}$ that maps the graph of f onto the graph of g,

■ EA-equivalent if there exist affine functions $A_{1}, A_{2}, A_{3}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$, where A_{1} and A_{2} are permutations, such that

$$
f\left(A_{1}(x)\right)=A_{2}(g(x))+A_{3}(x) .
$$

in general: EA-equivalence \Longrightarrow CCZ-equivalence. However:
Theorem (Yoshiara 2012)
For two quadratic APN functions f and g :
EA-equivalence \Longleftrightarrow CCZ-equivalence.

Known classes of APN power functions $x \mapsto x^{d}$ on $\mathbb{F}_{2^{n}}$

Exponent d

Gold
Kasami

$$
2^{2 k}-2^{k}+1
$$

Welch

$$
2^{k}+1
$$

$$
2^{k}+3
$$

Niho

$$
2^{k}+2^{\frac{k}{2}}-1, k \text { even }
$$

$$
2^{k}+2^{\frac{3 k+1}{2}}-1, k \text { odd }
$$

Inverse

$$
2^{2 k}-1
$$

Dobbertin

$$
2^{4 k}+2^{3 k}+2^{2 k}+2^{k}-1
$$

$$
n=2 k+1
$$

$$
n=2 k+1
$$

$$
n=5 k
$$

■ The equivalence problem is well-studied: in general, the APN power functions are inequivalent.

Known classes of APN non-power functions

N°	Functions	Conditions	In
F1-F2	$x^{2^{s}+1}+u^{2^{k}-1} x^{2^{i k}+2^{m k+s}}$	$\begin{gathered} n=p k, \operatorname{gcd}(k, p)=\operatorname{gcd}(s, p k)=1, \\ p \in\{3,4\}, i=s k \bmod p, m=p-i, \\ n \geq 12, u \text { primitive in } \mathbb{F}_{2^{n}}^{*} \end{gathered}$	[8]
F3	$\begin{aligned} & s x^{q+1}+x^{2^{i}+1}+x^{q\left(2^{i}+1\right)} \\ & \quad+c x^{2^{i} q+1}+c^{q} x^{2^{i}+q} \end{aligned}$	$\begin{gathered} q=2^{m}, n=2 m, \operatorname{gcd}(i, m)=1 \\ c \in \mathbb{F}_{2^{n}}, s \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{q}, \\ X^{2^{i}+1}+c X^{2^{i}}+c^{q} X+1 \\ \text { has no solution } x \text { s.t. } x^{q+1}=1 \end{gathered}$	[7]
F4	$x^{3}+a^{-1} \operatorname{Tr}\left(a^{3} x^{9}\right)$	$a \neq 0$	[10]
F5	$x^{3}+a^{-1} T r_{n}^{3}\left(a^{3} x^{9}+a^{6} x^{18}\right)$	$3 \mid n, a \neq 0$	[11]
F6	$x^{3}+a^{-1} \operatorname{Tr}_{n}^{3}\left(a^{6} x^{18}+a^{12} x^{36}\right)$	$3 \mid n, a \neq 0$	[11]
F7-F9	$\begin{gathered} u x^{2^{s}+1}+u^{2^{k}} x^{2^{-k}+2^{k+s}}+ \\ v x^{2^{-k}+1}+w u^{2^{k}+1} x^{2^{s}+2^{k+s}} \end{gathered}$	$\begin{gathered} n=3 k, \operatorname{gcd}(k, 3)=\operatorname{gcd}(s, 3 k)=1, \\ v, w \in \mathbb{F}_{2^{k}}, v w \neq 1, \\ 3 \mid(k+s) \quad u \text { primitive in } \mathbb{F}_{2^{n}}^{*} \end{gathered}$	$[2,3]$
F10	$\begin{gathered} \left(x+x^{2^{m}}\right)^{2^{i}+1}+ \\ u^{\prime}\left(u x+u^{2^{m}} x^{2^{m}}\right)^{\left(2^{i}+1\right) 2^{j}}+ \\ u\left(x+x^{2^{m}}\right)\left(u x+u^{2^{m}} x^{2^{m}}\right) \end{gathered}$	$\begin{gathered} n=2 m, m \geq 2 \text { even } \\ \operatorname{gcd}(i, m)=1 \text { and } j \geq 2 \text { even } \\ u \text { primitive in } \mathbb{F}_{2^{n}}^{*}, u^{\prime} \in \mathbb{F}_{2^{m}} \text { not a cube } \end{gathered}$	[29]
F11	$\begin{gathered} a^{2} x^{2^{2 m+1}+1}+b^{2} x^{2^{m+1}+1}+ \\ a x^{2^{2 m}+2}+b x^{2^{m}+2}+\left(c^{2}+c\right) x^{3} \end{gathered}$	$\begin{gathered} n=3 m, m \text { odd } \\ L(x)=a x^{2^{2 m}}+b x^{2^{m}}+c x \text { satisfies } \end{gathered}$ the conditions in Theorem 6.3 of [6]	[6]
$\begin{gathered} \text { F12 } \\ \text { Table } \end{gathered}$	$\begin{aligned} & u\left(u^{q} x+x^{q} u\right)\left(x^{q}+x\right)+\left(u^{q} x+x^{q} u\right)^{2^{2 i}+2^{3 i}} \\ & +a\left(u^{q} x+x^{q} u\right)^{2^{2 i}}\left(x^{q}+x\right)^{2^{i}}+b\left(x^{q}+x\right)^{2^{i}+1} \end{aligned}$ Budaghyan, Calderini, and Villa (2019)	$\begin{gathered} q=2^{m}, n=2 m, \operatorname{gcd}(i, m)=1 \\ X^{2^{i}+1}+a X+b \end{gathered}$ has no solution over $\mathbb{F}_{2^{m}}$	[27]

■ It is not much known about the equivalence problem.

Known classes of APN non-power functions

N°	Functions	Conditions	In
F1-F2	$x^{2^{s}+1}+u^{2^{k}-1} x^{2^{i k}+2^{m k+s}}$	$\begin{gathered} n=p k, \operatorname{gcd}(k, p)=\operatorname{gcd}(s, p k)=1, \\ p \in\{3,4\}, i=s k \bmod p, m=p-i, \\ n \geq 12, u \text { primitive in } \mathbb{F}_{2^{n}}^{*} \end{gathered}$	[8]
F3	$\begin{aligned} & s x^{q+1}+x^{2^{i}+1}+x^{q\left(2^{i}+1\right)} \\ & \quad+c x^{2^{i} q+1}+c^{q} x^{2^{i}+q} \end{aligned}$	$\begin{gathered} q=2^{m}, n=2 m, \operatorname{gcd}(i, m)=1 \\ c \in \mathbb{F}_{2^{n}}, s \in \mathbb{F}_{2^{n}} \backslash \mathbb{F}_{q}, \\ X^{2^{i}+1}+c X^{2^{i}}+c^{q} X+1 \\ \text { has no solution } x \text { s.t. } x^{q+1}=1 \end{gathered}$	[7]
F4	$x^{3}+a^{-1} \operatorname{Tr}\left(a^{3} x^{9}\right)$	$a \neq 0$	[10]
F5	$x^{3}+a^{-1} T_{n}^{3}\left(a^{3} x^{9}+a^{6} x^{18}\right)$	$3 \mid n, a \neq 0$	[11]
F6	$x^{3}+a^{-1} \operatorname{Tr}_{n}^{3}\left(a^{6} x^{18}+a^{12} x^{36}\right)$	$3 \mid n, a \neq 0$	[11]
F7-F9	$\begin{gathered} u x^{2^{s}+1}+u^{2^{k}} x^{2^{-k}+2^{k+s}}+ \\ v x^{2^{-k}+1}+w u^{2^{k}+1} x^{2^{s}+2^{k+s}} \end{gathered}$	$\begin{gathered} n=3 k, \operatorname{gcd}(k, 3)=\operatorname{gcd}(s, 3 k)=1, \\ v, w \in \mathbb{F}_{2^{k}}, v w \neq 1, \\ 3 \mid(k+s) \quad u \text { primitive in } \mathbb{F}_{2^{n}}^{*} \end{gathered}$	$[2,3]$
F10	$\begin{gathered} \left(x+x^{2^{m}}\right)^{2^{2}+1}+ \\ u^{\prime}\left(u x+u^{2^{m}} x^{2^{m}}\right)^{\left(2^{i}+1\right) 2^{j}}+ \\ u\left(x+x^{2^{m}}\right)\left(u x+u^{2^{m}} x^{2^{m}}\right) \end{gathered}$	$\begin{gathered} n=2 m, m \geq 2 \text { even } \\ \operatorname{gcd}(i, m)=1 \text { and } j \geq 2 \text { even } \\ u \text { primitive in } \mathbb{F}_{2^{n}}^{*}, u^{\prime} \in \mathbb{F}_{2^{m}} \text { not a cube } \end{gathered}$	[29]
F11	$a x^{2^{2 m}+2}+b x^{2^{m}+2}+\left(c^{2}+c\right) x^{3}$	$\begin{gathered} n=3 m, m \text { odd } \\ L(x)=a x^{2^{2 m}}+b x^{2^{m}}+c x \text { satisfies } \end{gathered}$ the conditions in Theorem 6.3 of [6]	[6]
$\begin{gathered} \text { F12 } \\ \text { Table } \end{gathered}$	$\begin{aligned} & u\left(u^{q} x+x^{q} u\right)\left(x^{q}+x\right)+\left(u^{q} x+x^{q} u\right)^{2^{2 i}+2^{3 i}} \\ & +a\left(u^{q} x+x^{q} u\right)^{2^{2 i}}\left(x^{q}+x\right)^{2^{i}}+b\left(x^{q}+x\right)^{2^{i}+1} \end{aligned}$ Budaghyan, Calderini, and Villa (2019)	$\begin{gathered} q=2^{m}, n=2 m, \operatorname{gcd}(i, m)=1 \\ X^{2^{i}+1}+a X+b \end{gathered}$ has no solution over $\mathbb{F}_{2^{m}}$	[27]

■ It is not much known about the equivalence problem.

Pott-Zhou APN functions

Theorem (Zhou and Pott 2013)

Let m be even and let k, s be integers, $0<k<m$ and $0 \leq s \leq m$, such that $\operatorname{gcd}(k, m)=1$. Let $\alpha \in \mathbb{F}_{2^{m}}^{*}$.

The function $f_{k, s, \alpha}: \mathbb{F}_{2^{2 m}} \rightarrow \mathbb{F}_{2^{2 m}}$ defined as

$$
f_{k, s, \alpha}(x, y)=\left(x^{2^{k}+1}+\alpha y^{\left(2^{k}+1\right) 2^{s}}, x y\right)
$$

is $A P N$ if s is even and α is a non-cube.

Pott-Zhou APN functions

Theorem (Zhou and Pott 2013

Let m be even and let k, s be integers, $0<k<m$ and $0 \leq s \leq m$, such that $\operatorname{gcd}(k, m)=1$. Let $\alpha \in \mathbb{F}_{2^{m}}^{*}$.
The function $f_{k, s, \alpha}: \mathbb{F}_{2^{2 m}} \rightarrow \mathbb{F}_{2^{2 m}}$ defined as

$$
f_{k, \mathbf{s}, \alpha}(x, y)=\left(x^{2^{k}+1}+\alpha y^{\left(2^{k}+1\right) 2^{s}}, x y\right)
$$

is APN if and only if s is even and α is a non-cube.

Pott-Zhou APN functions

Theorem (Zhou and Pott 2013 and Anbar, Kalaycı, and Meidl 2019)

Let m be even and let k, s be integers, $0<k<m$ and $0 \leq s \leq m$, such that $\operatorname{gcd}(k, m)=1$. Let $\alpha \in \mathbb{F}_{2^{m}}^{*}$.

The function $f_{k, s, \alpha}: \mathbb{F}_{2^{2 m}} \rightarrow \mathbb{F}_{2^{2 m}}$ defined as

$$
f_{k, s, \alpha}(x, y)=\left(x^{2^{k}+1}+\alpha y^{\left(2^{k}+1\right) 2^{s}}, x y\right)
$$

is APN if and only if s is even and α is a non-cube.

- f from the beginning is the Pott-Zhou APN function $f_{1,0, u^{\prime}}$ on $\mathbb{F}_{2^{4}}$:

$$
f_{1,0, u^{\prime}}(x, y)=\left(x^{2^{1}+1}+u^{\prime} y^{\left(2^{1}+1\right) 2^{0}}, x y\right)
$$

■ Pott-Zhou functions have two relevant parameters: k and s.

- Pott-Zhou functions are quadratic.

Our goal

Show that there exist many CCZ-inequivalent APN functions on $\mathbb{F}_{2^{2 m}}$ by studying for which parameters k, s, α and ℓ, t, β the functions $f_{k, s, \alpha}$ and $f_{\ell, t, \beta}$, where

$$
f_{k, s, \alpha}(x, y)=\left(x^{2^{k}+1}+\alpha y^{\left(2^{k}+1\right) 2^{s}}, x y\right)
$$

and

$$
f_{\ell, t, \beta}(x, y)=\left(x^{2^{\ell}+1}+\beta y^{\left(2^{\ell}+1\right) 2^{t}}, x y\right),
$$

are CCZ-equivalent.

Our goal

Show that there exist many CCZ-inequivalent APN functions on $\mathbb{F}_{2^{2 m}}$ by studying for which parameters k, s, α and ℓ, t, β the functions $f_{k, s, \alpha}$ and $f_{\ell, t, \beta}$, where

$$
f_{k, \mathbf{s}, \alpha}(x, y)=\left(x^{2^{k}+1}+\alpha y^{\left(2^{k}+1\right) 2^{s}}, x y\right)
$$

and

$$
f_{\ell, t, \beta}(x, y)=\left(x^{2^{\ell}+1}+\beta y^{\left(2^{\ell}+1\right) 2^{t}}, x y\right),
$$

are CCZ-equivalent.
Computational results about the number of inequivalent Pott-Zhou APNs:

m	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32
$\#$	1	2	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$

A first step: some trivial equivalences

Lemma (Zhou and K. (20xx))

Let m be an even integer. Let k, ℓ be integers coprime to m such that $0<k, \ell<m$, and let s, t be even integers, $0 \leq s, t \leq m$. Let α, β be non-cubes in $\mathbb{F}_{2^{m}}^{*}$.

The two Pott-Zhou APN functions $f_{k, s, \alpha}, f_{\ell, t, \beta}: \mathbb{F}_{2^{2 m}} \rightarrow \mathbb{F}_{2^{2 m}}$ are CCZ-equivalent

1 if $k=\ell$ and $s=t$, no matter which non-cubes α and β we choose,
2 if $k \equiv \pm \ell(\bmod m)$ and $s \equiv \pm t(\bmod m)$.

■ Since the choice of α does not matter, we write $f_{k, s}$ instead of $f_{k, s, \alpha}$.

- From now on we only consider $k, s \leq \frac{m}{2}$.

Our main theorem: the not so trivial part

Theorem (Zhou and K. (20xx))

Let $m \geq 4$ be an even integer. Let k, ℓ be integers coprime to m such that $0<k, \ell<\frac{m}{2}$, and let s, t be even integers, $0 \leq s, t \leq \frac{m}{2}$.
The Pott-Zhou $A P N$ functions $f_{k, s}, f_{\ell, t}: \mathbb{F}_{2^{2 m}} \rightarrow \mathbb{F}_{2^{2 m}}$ are CCZ-equivalent if and only if $k=\ell$ and $s=t$.

Our main theorem: the not so trivial part

Theorem (Zhou and K. (20xx))

Let $m \geq 4$ be an even integer. Let k, ℓ be integers coprime to m such that $0<k, \ell<\frac{m}{2}$, and let s, t be even integers, $0 \leq s, t \leq \frac{m}{2}$.

The Pott-Zhou $A P N$ functions $f_{k, s}, f_{\ell, t}: \mathbb{F}_{2^{2 m}} \rightarrow \mathbb{F}_{2^{2 m}}$ are CCZ-equivalent if and only if $k=\ell$ and $s=t$.

■ If $m=2$, up to equivalence, there exists only one function: $f_{1,0}$. It is actually EA-equivalent to the Gold APN function $x \mapsto x^{3}$.
■ Since $f_{k, s}$ is quadratic, it is sufficient to show EA-equivalence.

Sketch of the proof

$f_{k, s}$ and $f_{\ell, t}$ are EA-equivalent if there exist linearized polynomials $L_{A}(X, Y), L_{B}(X, Y), M_{A}(X, Y), M_{B}(X, Y) \in \mathbb{F}_{2^{m}}[X, Y]$ and $N_{1}(X), \ldots, N_{4}(X) \in \mathbb{F}_{2^{m}}[X]$ such that

$$
\begin{aligned}
L_{A}(x, y)^{2^{k}+1}+\alpha L_{B}(x, y)^{\left(2^{k}+1\right) 2^{s}} & =N_{1}\left(x^{2^{\ell}+1}+\alpha y^{\left(2^{\ell}+1\right) 2^{t}}\right)+N_{3}(x y)+M_{A}(x, y), \\
L_{A}(x, y) L_{B}(x, y) & =N_{2}\left(x^{2^{\ell}+1}+\alpha y^{\left(2^{\ell}+1\right) 2^{t}}\right)+N_{4}(x y)+M_{B}(x, y)
\end{aligned}
$$

holds for all $x, y \in \mathbb{F}_{2^{m}}$.
We show that there only exist such polynomials if $k=\ell$ and $s=t$. Moreover, we show that in this case, L_{A} and L_{B} are linearized monomials of the same degree.

1 Show that the equivalence mappings between Gold APN functions are linearized monomials.
2 Show that $f_{k, s}$ and $f_{\ell, t}$ can only be equivalent if $k=\ell$.
3 Show that $f_{k, s}$ and $f_{k, t}$ are equivalent if $s=t$.

Lower bound on the number of inequivalent APN functions

Corollary (Zhou and K. (20xx))

On $\mathbb{F}_{2^{2 m}}$, where $m \geq 4$ is even, the number of CCZ-inequivalent Pott-Zhou APN functions is

$$
\left(\left\lfloor\frac{m}{4}\right\rfloor+1\right) \frac{\varphi(m)}{2}
$$

where φ denotes Euler's phi function.

Lower bound on the number of inequivalent APN functions

Corollary (Zhou and K. (20xx))

On $\mathbb{F}_{2^{2 m}}$, where $m \geq 4$ is even, the number of CCZ-inequivalent Pott-Zhou APN functions is

$$
\left(\left\lfloor\frac{m}{4}\right\rfloor+1\right) \frac{\varphi(m)}{2}
$$

where φ denotes Euler's phi function.

- We have $\left(\left\lfloor\frac{m}{4}\right\rfloor+1\right)$ choices for s and $\frac{\varphi(m)}{2}$ choices for k.
- Number of functions for small m :

m	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32
$\#$	1	2	2	6	6	8	12	20	15	24	30	28	42	48	32	72

(red cases can be checked computationally by computing the 「-rank)

Number of Pott-Zhou APN functions in $\mathbb{F}_{2^{2 m}}, m$ even

Number of Pott-Zhou APN functions in $\mathbb{F}_{2^{2 m}}, m$ even

Number of Pott-Zhou APN functions in $\mathbb{F}_{2^{2 m}}, m$ even

Automorphism group of the Pott-Zhou APN functions

Corollary (Zhou and K. (20xx))

Let $f_{k, s}$ be a Pott-Zhou $A P N$ function on $\mathbb{F}_{2^{2 m}}$. If $m \geq 4$, then

$$
\left|\operatorname{Aut}\left(f_{k, s}\right)\right|= \begin{cases}3 m 2^{2 m}\left(2^{m}-1\right) & \text { if } s \in\left\{0, \frac{m}{2}\right\}, \\ 3 m 2^{2 m-1}\left(2^{m}-1\right) & \text { otherwise. }\end{cases}
$$

- If $m=2$, then

$$
\left|\operatorname{Aut}\left(f_{1,0}\right)\right|=\left|\operatorname{Aut}\left(x^{3}\right)\right|=5760
$$

which was first shown by Berger and Charpin (1996).
■ Count the possible equivalence mappings of $f_{k, s}$.

Outlook

We have established a first lower bound on the total number of CCZ-inequivalent APN functions on $\mathbb{F}_{2^{2 m}}$, where m is even. However, there is still work to be done:

- Improve this lower bound.

■ Establish a lower bound for functions on $\mathbb{F}_{2^{n}}$ where $n \nmid 4$.

- Clean up the known constructions.

■ And, of course, find another APN permutation on $\mathbb{F}_{2^{n}}$ where n is even.

References I

N. Anbar, T. Kalaycı, and W. Meidl. Determining the Walsh spectra of Taniguchi's and related APN-functions. In:
Finite Fields and Their Applications 60 (2019), p. 101577. URL:
http://www.sciencedirect.com/science/article/pii/ S1071579719300802.

围 T.P. Berger and P. Charpin. The permutation group of affine-invariant extended cyclic codes. In: IEEE Trans. Inform. Theory 42.6, part 2 (1996), pp. 2194-2209. URL: https://doi.org/10.1109/18.556607.
L. Budaghyan, M. Calderini, and I. Villa.

On equivalence between known families of quadratic APN functions. Cryptology ePrint Archive, Report 2019/793. 2019. URL: https://eprint.iacr.org/2019/793.

References II

(A. Pott. Almost Perfect and Planar Functions. In: Des. Codes Cryptography 78.1 (2016), pp. 141-195. URL: http://dx.doi.org/10.1007/s10623-015-0151-x.
S. Yoshiara. Equivalences of quadratic APN functions. In: Journal of Algebraic Combinatorics 35.3 (2012), pp. 461-475. URL: https://doi.org/10.1007/s10801-011-0309-1.

围 Y. Zhou and A. Pott. A new family of semifields with 2 parameters. In: Advances in Mathematics 234 (2013), pp. 43-60. URL: http://www.sciencedirect.com/science/article/pii/ S0001870812004057.

