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Vectorial boolean functions

A vectorial boolean function is a function f : Fn
2 → Fm

2 . We are interested
in functions f : Fn

2 → Fn
2.

A function f on F4
2 represented by its graph:

x 0000 1000 0100 1100 0010 1010 0110 1110

f (x) 0000 0100 0100 0100 1000 1110 1101 1111

x 0001 1001 0101 1101 0011 1011 0111 1111

f (x) 1000 1101 1111 1110 1000 1111 1110 1101
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Representations of vectorial boolean functions
The same function f in

coordinate function representation:

f


x1
x2
x3
x4

 =


x3x4 + x3 + x4
x1x2 + x1 + x2
x1x3 + x2x4

x1x4 + x2x3 + x2x4


algebraic degree of f : largest degree of all the coordinate functions
f has algebraic degree 2. The function is quadratic.

univariate representation on F24 , where u is primitive in F24 :

f (x) = ux12 + u14x9 + u8x8 + u9x6 + u5x5 + u10x3 + u8x2 + ux

bivariate representation on F22 × F22 , where u′ is primitive in F22 :

f (x , y) =
(
x3 + u′y3, xy

)
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Almost perfect nonlinear (APN) functions

Definition

A function f : F2n → F2n is called almost perfect nonlinear (APN) if the
equation

f (x + a)− f (x) = b

has 0 or 2 solutions for all a, b ∈ F2n , where a 6= 0.

Why are people interested in APN functions?

Cryptography: APN functions offer the best resistance possible to the
differential attack

Applications in coding theory, projective geometry, semifield theory

For more background, see the survey by Pott (2016).
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(Open) problems regarding APN functions

1 Find another APN permutation on F2n , where n is even.

So far, only one is known: for n = 6 (Dillon 2009).

2 Establish a lower bound on the number of inequivalent APN
functions.

Several infinite families are known, however it is often not clear if APN
functions
- within one class or
- from different classes
are mutually inequivalent.

3 Find more non-quadratic APN functions.

No progress since 2006.
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Notions of equivalence of APN functions

Two functions f , g : F2n → F2n are called

CCZ-equivalent if there exists an affine permutation C on F2n × F2n

that maps the graph of f onto the graph of g ,

EA-equivalent if there exist affine functions A1,A2,A3 : F2n → F2n ,
where A1 and A2 are permutations, such that

f (A1(x)) = A2(g(x)) + A3(x).

in general: EA-equivalence =⇒ CCZ-equivalence. However:

Theorem (Yoshiara 2012)

For two quadratic APN functions f and g :
EA-equivalence ⇐⇒ CCZ-equivalence.
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Known classes of APN power functions x 7→ xd on F2n

Exponent d Conditions

Gold 2k + 1 gcd(k , n) = 1

Kasami 22k − 2k + 1 gcd(k , n) = 1

Welch 2k + 3 n = 2k + 1

Niho 2k + 2
k
2 − 1, k even n = 2k + 1

2k + 2
3k+1
2 − 1, k odd n = 2k + 1

Inverse 22k − 1 n = 2k + 1

Dobbertin 24k + 23k + 22k + 2k − 1 n = 5k

The equivalence problem is well-studied: in general, the APN power
functions are inequivalent.

Christian Kaspers (Magdeburg) Number of inequivalent APN functions Paderborn, Nov. 2019 7 / 17



Known classes of APN non-power functions

Table by Budaghyan, Calderini, and Villa (2019)

It is not much known about the equivalence problem.
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Pott-Zhou APN functions

Theorem (Zhou and Pott 2013)

Let m be even and let k, s be integers, 0 < k < m and 0 ≤ s ≤ m, such
that gcd(k ,m) = 1. Let α ∈ F∗2m .

The function fk,s,α : F22m → F22m defined as

fk,s,α(x , y) =
(
x2

k+1 + αy (2
k+1)2s , xy

)
is APN if s is even and α is a non-cube.

f from the beginning is the Pott-Zhou APN function f1,0,u′ on F24 :

f1,0,u′(x , y) = (x2
1+1 + u′y (2

1+1)20 , xy)

Pott-Zhou functions have two relevant parameters: k and s.

Pott-Zhou functions are quadratic.
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Our goal

Show that there exist many CCZ-inequivalent APN functions on F22m by
studying for which parameters k , s, α and `, t, β the functions fk,s,α and
f`,t,β, where

fk,s,α(x , y) =
(
x2

k+1 + αy (2
k+1)2s , xy

)
and

f`,t,β(x , y) =
(
x2

`+1 + βy (2
`+1)2t , xy

)
,

are CCZ-equivalent.

Computational results about the number of inequivalent Pott-Zhou APNs:

m 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

# 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ?
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A first step: some trivial equivalences

Lemma (Zhou and K. (20xx))

Let m be an even integer. Let k, ` be integers coprime to m such that
0 < k , ` < m, and let s, t be even integers, 0 ≤ s, t ≤ m. Let α, β be
non-cubes in F∗2m .

The two Pott-Zhou APN functions fk,s,α, f`,t,β : F22m → F22m are
CCZ-equivalent

1 if k = ` and s = t, no matter which non-cubes α and β we choose,

2 if k ≡ ±` (mod m) and s ≡ ±t (mod m).

Since the choice of α does not matter, we write fk,s instead of fk,s,α.

From now on we only consider k , s ≤ m
2 .
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Our main theorem: the not so trivial part

Theorem (Zhou and K. (20xx))

Let m ≥ 4 be an even integer. Let k , ` be integers coprime to m such
that 0 < k , ` < m

2 , and let s, t be even integers, 0 ≤ s, t ≤ m
2 .

The Pott-Zhou APN functions fk,s , f`,t : F22m → F22m are CCZ-equivalent
if and only if k = ` and s = t.

If m = 2, up to equivalence, there exists only one function: f1,0. It is
actually EA-equivalent to the Gold APN function x 7→ x3.

Since fk,s is quadratic, it is sufficient to show EA-equivalence.
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Sketch of the proof

fk,s and f`,t are EA-equivalent if there exist linearized polynomials
LA(X ,Y ), LB(X ,Y ),MA(X ,Y ),MB(X ,Y ) ∈ F2m [X ,Y ] and
N1(X ), . . . ,N4(X ) ∈ F2m [X ] such that

LA(x ,y)
2k+1+αLB(x ,y)

(2k+1)2s = N1(x2
`+1+αy (2`+1)2t )+N3(xy)+MA(x ,y),

LA(x ,y)LB(x ,y) = N2(x2
`+1+αy (2`+1)2t )+N4(xy)+MB(x ,y)

holds for all x , y ∈ F2m .

We show that there only exist such polynomials if k = ` and s = t.
Moreover, we show that in this case, LA and LB are linearized monomials
of the same degree.

1 Show that the equivalence mappings between Gold APN functions are
linearized monomials.

2 Show that fk,s and f`,t can only be equivalent if k = `.

3 Show that fk,s and fk,t are equivalent if s = t.
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Lower bound on the number of inequivalent APN functions

Corollary (Zhou and K. (20xx))

On F22m , where m ≥ 4 is even, the number of CCZ-inequivalent
Pott-Zhou APN functions is(⌊m

4

⌋
+ 1
) ϕ(m)

2
,

where ϕ denotes Euler’s phi function.

We have
(⌊

m
4

⌋
+ 1
)

choices for s and ϕ(m)
2 choices for k.

Number of functions for small m:

m 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

# 1 2 2 6 6 8 12 20 15 24 30 28 42 48 32 72

(red cases can be checked computationally by computing the Γ-rank)
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Number of Pott-Zhou APN functions in F22m, m even
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Automorphism group of the Pott-Zhou APN functions

Corollary (Zhou and K. (20xx))

Let fk,s be a Pott-Zhou APN function on F22m . If m ≥ 4, then

|Aut(fk,s)| =

{
3m22m(2m − 1) if s ∈ {0, m2 },
3m22m−1(2m − 1) otherwise.

If m = 2, then
|Aut(f1,0)| = |Aut(x3)| = 5760

which was first shown by Berger and Charpin (1996).

Count the possible equivalence mappings of fk,s .
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Outlook

We have established a first lower bound on the total number of
CCZ-inequivalent APN functions on F22m , where m is even. However,
there is still work to be done:

Improve this lower bound.

Establish a lower bound for functions on F2n where n - 4.

Clean up the known constructions.

And, of course, find another APN permutation on F2n where n is even.
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