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Note: All numbers refer to main paper unless prefixed by S.

S.1. Technical Assumptions on the Functional Time Series.

S.1.1. Basic assumption for the time series and change. Throughout the
paper we make the following very general very weak assumptions on the time
series {Yt(·)} and the change {∆ = µ2 − µ1}. The mean functions before
the change µ = µ(·), the change ∆ = ∆(·) as well as the functional time
series {Yt(·) : 1 6 t 6 n} are elements of L2(U). Furthermore we assume
that the time series {Yt(·) : t > 1} is centered, stationary and ergodic with

E ‖Yt(·)‖2 =

∫
E(Y 2

t (u)) du <∞.
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S.2 ASTON & KIRCH

S.1.2. Component time series assumptions for null asymptotics . To ob-
tain the null asymptotics for our test statistics in (5.5), we need the follow-
ing stronger assumptions on the projected time series ηt = (ηt,1, . . . , ηt,d)

T ,
where ηt,l =

∫
Yt(u)vl(u) du, l = 1, . . . , d, and vl(·) is as in (5.2).

• The time series {ηt : t ∈ Z} is stationary and short-range dependent
i.e. ∑

t∈Z
| cov(η0,l1 , ηt,l2)| <∞, l1, l2 = 1, . . . , d.

• {ηt} fulfills the following functional limit theorem{
1√
n

∑
16t6nx

ηt : 0 6 x 6 1

}
Dd[0,1]−→ {Σ−1/2W d(x) : 0 6 x 6 1},

whereW d is a standard d-dimensional Wiener process and the positive-
definite covariance matrix Σ is defined by

Σ =
∑
k∈Z

Γ(k), Γ(j) = Eηtη
T
t+h for h > 0, and Γ(h) = Γ(−h)T for h < 0.

These assumptions can be verified for general orthonormal systems {vk(·), k =
1, . . . , d} under assumptions on the dependence structure of the original time
series {Yt(·)}. For instance, it is fulfilled for strong mixing time series as well
as Lp−m-approximable time series (in the sense of Hörmann and Kokoszka
(2010)). More details can be found in Aston and Kirch (2012).

S.2. Some Theory for Principal Components Based on Sepa-
rable Covariance Structures. In this section we give some additional
theoretic results for estimated principal components based on a separable
covariance structure as well as a very general power result when using the
corresponding separable dimension reduction in the change-point tests.

S.2.1. Consistency results for the estimated separable principal compo-
nents. In this section we will prove that (5.2) and (5.3) hold when using
the separable principal components. In particular, this gives consistency of
the estimators in the correctly specified case, when the covariance kernel
c(u, s) is truly separable. However even if the true covariance kernel is not
separable we still obtain (5.2) and (5.3) just with a different interpretation
of the limit orthonormal system as stated in the theorem below.
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Recall that we use the following estimator to obtain the separable marginal
covariance kernels

(S.2.1) ĉ1(u1, s1) =

∫
U2
ĉn((u1, z), (s1, z))dz

and

(S.2.2) ĉ2(u2, s2) =

∫
U1
ĉn((z, u2), (z, s2))dz,

where ĉn ((u1, u2), (s1, s2)) is as in (3.5). Furthermore,

c̃1(u1, s1) =

∫
U2
c((u1, z), (s1, z))dz, c̃2(u2, s2) =

∫
U1
c((z, u2), (z, s2))dz,

c̃ ((u1, u2), (s1, s2)) = c̃1(u1, s1) c̃2(u2, s2)
(S.2.3)

and define k̃1, k̃2, k̃ correspondingly by replacing c with the contaminated
covariance kernel k((u1, u2), (s1, s2)) as in (5.10). Define

(S.2.4) v̂(r,l)(u1, u2) = v̂1,r(u1)v̂2,l(u2), r = 1, . . . , d1, l = 1, . . . , d2,

where v̂i,r is the rth principal component of ĉi as in (S.2.1) resp. (S.2.2).

The following theorem shows that the non-contaminated subspace as in
(5.2) of this estimator is given as the corresponding subspace of principal
components of c̃ while the contaminated subspace as in (5.3) is given as the
corresponding subspace of principal components of k̃.

While we do not need that the covariance kernel is separable for the result
in this theorem, we do obtain consistency in the separable case without
change as then (with the notation of the theorem below) ṽ(r,l)(u1, u2) =
v1,r(u1)v2,l(u2) and those are the true eigenfunctions in the separable case.

To obtain the theorem we merely require (5.8) to hold under the null
hypothesis and (5.9) under the alternative, where c and k are kernels but
not necessarily separable. The nonparametric covariance estimator (3.5), for
example, fulfills (5.8) as well as (5.9) for a large class of functional time
series including mixing sequences or Lp − m-approximable time series (in
the sense of Hörmann and Kokoszka (2010)), for more details we refer to
Aston and Kirch (2012).
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Theorem S.2.1. a) Let (5.8) hold and in addition λ̃i,1 > λ̃i,2 > . . . >

λ̃i,di+1 > 0, i = 1, 2, where λ̃i,l are the largest eigenvalues of c̃i. Let ṽi,r
be the rth principal component of c̃i.
Then v̂(r,l)(u1, u2) as in (S.2.4) and ṽ(r,l)(u1, u2) = ṽ1,r(u1)ṽ2,l(u2), r =
1, . . . , d1, l = 1, . . . , d2, fulfill (5.2).

b) Let (5.9) hold and in addition γ̃i,1 > γ̃i,2 > . . . > γ̃i,di+1, i = 1, 2,

where γ̃i,l are the largest eigenvalues of k̃i. Let wi,r be the rth principal

components of k̃i.
Then v̂(r,l)(u1, u2) as in (S.2.4) and w̃(r,l)(u1, u2) = w̃1,r(u1)w̃2,l(u2), r =
1, . . . , d1, l = 1, . . . , d2, fulfill (5.3).

Remark S.2.1. Note that ṽ(r,l) resp. w̃(r,l) are eigenfunctions belonging

to the eigenvalue λ̃1,rλ̃2,l of c̃ resp. to the eigenvalue γ̃1,rγ̃2,l > 0 of k̃. This
’balanced’ choice of basis is guaranteed to include at least the eigenfunctions
belonging to the largest d = min(d1, d2) eigenvalues of the joint covariance
kernel c̃ (resp. k̃).

Furthermore, this is preferable to choosing just the eigenfunctions belong-
ing to the largest d joint eigenvalues for the following reason: Corollary 5.1
b) shows that any large enough separable change has a tendency to switch
the eigenfunctions in such a way that it becomes detectable. However, if the
change is large in one of the components and small in the other one exam-
ples can be constructed where the change is not orthogonal to the d joint
noncontaminated subspace but orthogonal to the contaminated subspace.
The reason is that the contaminated eigenvalues in one component may be-
come very large while only increasing slightly in the other component. As a
result it is possible for all v̂1,k(u1) · v̂2,l(u2) corresponding to the joint largest
eigenvalues that the first change ∆1, e.g., is not orthogonal to w1,k but ∆2

is orthogonal to w2,l. But then ∆(u1, u2) = ∆1(u1)∆2(u2) is orthogonal to
the joint eigenspace belonging to the largest contaminated eigenvalues and
hence not detectable. This cannot happen if one chooses a balanced basis of
the products of the eigenfunctions belonging to the largest d1 eigenvalues in
the first dimension and largest d2 eigenvalues in the second dimension (cf.
Corollary 5.1 a)).

S.2.2. Power analysis for a general change. The following theorem char-
acterizes the contaminated eigenfunction basis and its relation to the change
for the separable estimation procedure. In part a) of the theorem a character-
isation via the contaminated projection subspace is given for all changes that
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are detectable by the uncontaminated projection subspace, i.e. for which∫
U1

∫
U2

∆(u1, u2)ṽ1,r(u1)ṽ2,l(u2) du1 du2 6= 0

for some r, l. Unlike in the situation where one uses a fully nonparamet-
ric covariance estimator to obtain the projection subspace (cf. Theorem 3.2
in Aston and Kirch (2012)) we cannot conclude that the change is also de-
tectable by the contaminated (separable) projection subspace, i.e. in general
it does not hold that∫

U1

∫
U2

∆(u1, u2)w̃1,r(u1)w̃2,l(u2) du1 du2 6= 0

for some r, l. Only the weaker statement given in the theorem can be de-
rived. However, usually this will not cause a problem and the change will
remain detectable. In the special case of a separable change, i.e. ∆(u1, u2) =
∆1(u1)∆2(u2), detectability of a change by the uncontaminated projection
subspace and the assertion obtained in the theorem are equivalent, showing
that any separable change detectable by the uncontaminated projection sub-
space is also detectable by the contaminated subspace. This is the separable
analogue of Theorem 3.2 a) from Aston and Kirch (2012).

Part b) of the theorem gives a sufficient condition for which a large enough
change is detectable using only a one-dimensional projection subspace. In
case of a separable change this condition is fulfilled for any change, showing
that any large enough separable change is detectable even when using only
a one-dimensional subspace. This is the separable analogue of Theorem 3.2
b) in Aston and Kirch (2012).

Note that it is not needed that c is separable.

Theorem S.2.2. a) Let ṽj,r be the rth principal component of c̃j and w̃j,r
be the rth principal component belonging to k̃j and let

k ((u1, u2), (s1, s2)) = c((u1, u2), (s1, s2)) + θ(1− θ)∆(u1, u2)∆(s1, s2)

as in (5.10). Then it holds:∫
U1

∫
U2

∆(u1, u2)ṽ1,r(u1)ṽ2,l(u2) du1 du2 6= 0, for some 1 6 r 6 d1, 1 6 l 6 d2

=⇒
∫
U1

∆(u1, u2)w̃1,r(u1) du1 6≡ 0 for some 1 6 r 6 d1

and

∫
U2

∆(u1, u2)w2,r(u2) du2 6≡ 0 for some 1 6 l 6 d2.
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b) Let ∆D(u1, u2) = D∆(u1, u2) for some ∆(u1, u2) with
∫
U1

∫
U2 ∆2(u1, u2) du1 du2 6=

0. Let w̃j,k,D, k = 1, . . . , dj , be the normalized principal components of

the covariance kernel k̃j,D obtained analogously to (S.2.3) with

kD ((u1, u2), (s1, s2)) = c((u1, u2), (s1, s2))+θ(1−θ)∆D(u1, u2)∆D(s1, s2).

Let ψj(u1, s1) =
∫

∆(u1, z)∆(s1, z) dz resp. ψ2(u2, s2) =
∫

∆(z, u2)∆(z, s2) dz
have decreasing eigenvalues ξj,1 > ξj,2 > ξj,3 > . . . with corresponding
normalised eigenfunctions xj,1, . . ..
Then, for j = 1, 2, as D →∞,

‖sj,1w̃j,1,D(·)− xj,1(·)‖ → 0, sj,1 = sgn

(∫
w̃j,1,D(z)xj,1(z) dz

)
.

In particular, there exists D0 > 0 such that∫
∆D(u1, u2)w̃1,1,D(u1)w̃2,1,D(u2) du1 du2 6= 0,

for all |D| > D0, if∫
∆(u1, u2)x1,1(u1)x2,1(u2) du1 du2 6= 0.

S.3. Some additional aspects of estimation of the temporal co-
variance matrix. In this section we give some additional information on
possible adaptations of the temporal long-run covariance matrix needed for
the change-point procedure.

As pointed out in Section 6.1 most estimators for the long-run covariance
matrix are based on

Σ̂ =
∑
|h|6bn

wq(h/bn)Γ̂(h),

for some appropriate weight function wq and bandwidth bn where Γ̂(·) is an
estimator for the autocovariance matrix of the (uncontaminated) projected
data vector.

Recall that

(m̂1,l, m̂2,l) = arg max
k1,k2

∣∣∣∣∣∣
k2∑
t=k1

η̂t,l −
k2 − k1
n

n∑
t=1

η̂t,l

∣∣∣∣∣∣

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are the estimated change-points that are estimated separately in each com-
ponent and let

ê(t) = (ê1(t), . . . , êd(t))
T ,

(S.3.1)

where êl(t) = η̂t,l − ¯̂ηm̂1,l,m̂2,l
1{m̂1,l<t6m̂2,l} − ¯̂η

◦
m̂1,l,m̂2,l

1{t6m̂1,l,m̂2,l<t},

¯̂ηm̂1,l,m̂2,l
=

1

m̂2,l − m̂1,l

m̂2,l∑
t=m̂1,l+1

η̂t,l,

¯̂η
◦
m̂1,l,m̂2,l

=
1

n− m̂2,l + m̂1,l

∑
16t6m̂1,l,m̂2,l<t6n

η̂t,l,

be the estimated uncontaminated data. With this notation, we obtain an
estimator of the uncontaminated autocovariance matrix as

Γ̂(h) =
1

n

n−r∑
t=1

ê(t)ê(t+ h)T , h > 0, Γ̂(h) = Γ̂(−h), h < 0.

We use the following flat-top kernel

w(x) =


1, |x| 6 1/2,

2(1− |x|), 1/2 < |x| < 1,

0, |x| > 1,

and the bandwidth Bl,k = Bk,l = 2 max(̂bl,k, b̂k,l), where b̂l,k is the smallest
positive integer such that∣∣∣∣Γ̂l,k (̂bl,k + j)/

√
Γ̂l,l(0)Γ̂k,k(0)

∣∣∣∣ < 1.4
√

log10 n/n, for j = 1, . . . , 3.

Using the matrix of entries

Σ̂
(1)

=

 ∑
|h|6bk,l

wq(h/bk,l)Γ̂k,l(h)


k,l

gives a symmetric estimator. However, while it is asymptotically positive
definite, this is not necessarily true for small samples, where it can even have
negative eigenvalues. In fact, in the fMRI application described in this paper
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the long-run covariance matrix had dimension 64 × 64 and estimation was
conducted based on 225 data vectors only. The effect is that the estimation
error can become rather large resulting in as much as thirty percent negative
eigenvalues.

If one is only interested in a good positive definite estimator of the long-
run covariance matrix but not its inverse as in our case, then the following
approach yields reasonable results and was suggested by Politis (2009) to
overcome this deficiency. Consider the orthogonal diagonalization

Σ̂
(1)

= UDUT

where U is an orthogonal matrix, D = diag(δ1, . . . , δd) with δ1 > δ2 > . . . >
δd, and D+ = diag(δ+1 , . . . , δ

+
d ), δ+j = max(δj ,MC/an), where an →∞ and

MC = Median(m1, . . . ,md),

where m1, . . . ,md are the eigenvalues of the estimated non-contaminated
covariance matrix (

1

n− 1

n∑
t=1

el(t)ek(t)

)
k,l

.

This choice ensures that D+ is scale invariant and asymptotically equal to
D. A symmetric and positive definite estimator for Σ is thus given by

Σ̂
(2)

= UD+UT

For the change-point procedure in this paper an estimator for the inverse
of Σ is needed, which can easily be obtained from the above decomposition
as

Σ̂
(2) −1

= U(D+)−1UT .

If the eigenvalues of the estimator are arbitrarily small, then the eigenvalues
of the inverse become arbitrarily large, which in turn causes the change-point
statistic to become very large. A cut-off point MC/an as above solves the
problem in principle, but if it is chosen too small it will cause the change-
point statistic to reject. For this reason, we used the following estimator in
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our data example for the inverse

Σ̂
(3) −1

= UD̃−1UT ,

where D̃−1 = diag
(
δ̃−11 , . . . , δ̃−1d

)
,

δ̃−1j =

{
δ−1j , δj >MC/an,

0, else.

This is a conservative estimator because the value of the change-point statis-
tic using this estimator will be smaller than any instance where δj had been
set to any fixed small value. In the application an was set equal to log n and
in all cases Mc/an ≈ 0.5. Nevertheless even with this conservative cut-off
point the null hypothesis of stationarity was rejected for all subjects in the
Connectome data set.

In conclusion, if the dimension of the projection subspace is large in com-
parison to the length of the time series or if the time series deviates from
stationarity in a different way than exhibiting an epidemic change, this es-
timator does not perform satisfactory. In this case it leads to a more stable
and conservative change detection procedure if one only corrects for the
long-run variance, setting all non-diagonal elements of the matrix equal to
zero leading to the statistics discussed in Section 6.1.

S.4. Proofs.

of Theorem S.2.1. By the Cauchy-Schwarz inequality it holds

n

∫
U1

∫
U1

(∫
U2
ĉn((u1, z), (s1, z))− c((u1, z), (s1, z)) dz

)2

du1 ds1

≤
∫
U2

1 dz n

∫
U1

∫
U1

∫
U2

(ĉn((u1, z), (s1, z))− c((u1, z), (s1, z)))2 dz du1 ds1
P−→ 0,

where the convergence follows from the assumptions of the theorem as well
as the continuity of c and a.s. continuity of ĉn. By Theorem 2.1 of Aston
and Kirch (2012) we can conclude that∫

U1

(
v̂1,l(u1)− sgn1,lṽ1,l(u1)

)2
du1 = OP (n−1),

where sgn1,l = ±1. Similarly one gets∫
U2

(
v̂2,l(u2)− sgn2,lṽ2,l(u2)

)2
du2 = OP (n−1).
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Putting the two together yields an orthonormal system fulfilling (5.2). The
proof of b) is analogous.

of Theorem S.2.2. It holds

k̃1(u1, u2) = c̃1(u1, u2) + θ(1− θ)
∫
U2

∆(u1, z) ∆(s1, z) dz,

Analogously

k̃2(s1, s2) = c̃2(s1, s2) + θ(1− θ)
∫
U1

∆(z, u2) ∆(z, s2) dz.

We are now ready to prove a).

We prove the assertion by contradiction. Thus either∫
U1

∆(u1, u2)w̃1,r(u1) du1 ≡ 0 for all r = 1, . . . , d1,

or ∫
U2

∆(u1, u2)w̃2,l(u2) du2 ≡ 0 for all l = 1, . . . , d2.

Analogous to the proof of Theorem 3.2 in Aston and Kirch (2012) we obtain∫
U1

∆(u1, u2)ṽ1,r(u1) du1 ≡ 0 for all r = 1, . . . , d1,

or ∫
U2

∆(u1, u2)ṽ2,l(u2) du2 ≡ 0 for all l = 1, . . . , d2.

This in turn implies∫
U1

∫
U2

∆(u1, u2)ṽ1,r(u1)ṽ2,l(u2) du1 du2 = 0, for all 1 6 r 6 d1, 1 6 l 6 d2.

For b) we show the result for j = 1, the assertion for j = 2 follows
analogously. The eigenvectors of k̃1/D

2 are the same as those of k̃1, while
the eigenvalues are also divided by D2 hence remain in the same order. As
D →∞ it holds

k̃1(u1, s1)

D2
=
c̃1(u1, s1)

D2
+ θ(1− θ)ψ1(u1, s1)

→ θ(1− θ)ψ1(u1, s1).
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By assumption, and Theorem 2.1 in Aston and Kirch (2012), it holds

± w̃1,k,D → x1,k, k = 1, . . . , d1.

The second assertion of b) follows by the continuity of the scalar product in
a Hilbert space.

of Corollary 5.1. In case of separability it holds∫
U1

∆(u1, u2)w̃1,r(u1) du1 = ∆2(u2)

∫
U1

∆1(u1)w̃1,r(u1) du1 6≡ 0

=⇒
∫
U1

∆1(u1)w̃1,r(u1) du1 6= 0.

Analogously ∫
U2

∆2(u2)w̃2,l(u2) du2 6= 0,

hence assertion a) follows from Theorem S.2.2 a).

For b) note that in case of separability∫
U1

∫
U2

∆(u1, u2)∆1(u1)∆2(u2) du1 du2 =

∫
U1

∫
U2

∆1(u1)
2∆2(u2)

2 du1 du2 6= 0,

since ∆ 6≡ 0. Hence∫
U2

∆(u1, z)∆(s1, z) dz =

∫
U2

∆2
2(z) dz∆1(u1)∆1(s1),

has rank 1, i.e. only one non-zero eigenvalue. The corresponding eigenfunc-
tion is ∆1(u1) and the normalised eigenfunction is ∆j/‖∆j‖, j = 1, 2, so
that b) follows from Theorem S.2.2 b).

of Theorem 8.1. Let F̂m(x) = 1
m

∑m
i=1 1{ϑi6x} be the (unobservable)

empirical distribution function of Fϑ. By the Glivenko-Cantelli lemma we
know as m→∞

(S.4.1) sup
x
|F̂m(x)− Fϑ(x)| → 0 a.s.

Hence it is sufficient to show that supx |F̂ϑ̂,m(x)− F̂m(x)| → 0 a.s. It holds∣∣∣F̂ϑ̂,m(x)− F̂m(x)
∣∣∣ 6 1

m

m∑
i=1

1{Ai(x)},
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where

Ai(x) =

{
{ϑi < x 6 ϑ̂i}, ϑi 6 ϑ̂i,

{ϑ̂i < x 6 ϑi}, ϑi > ϑ̂i.

For any ε > 0 it holds

Ai(x) ⊂ {|ϑi − x| < ε} ∪ {|ϑ̂i − ϑi| > ε},

hence
1{Ai(x)} 6 1{|ϑi−x|<ε} + 1{|ϑ̂i−ϑi|>ε}.

Consider Ym(i) := 1{|ϑ̂i−ϑi|>ε}−P (|ϑ̂i−ϑi| > ε), a triangular array of rowwise

i.i.d. centered random variables with |Ym(i)| 6 2 and

E

∣∣∣∣∣ 1

m

m∑
i=1

Ym(i)

∣∣∣∣∣
4

6 C
1

m2

for some constant C > 0. An application of the Markov inequality as well
as of the Borel-Cantelli Lemma thus shows 1

m

∑m
i=1 Ym(i) → 0 a.s., which

implies in turn

1

m

m∑
i=1

1{|ϑ̂i−ϑi|>ε} → 0 a.s.,

since by (8.1) and the dominated convergence theorem

P
(
|ϑ̂i − ϑi| > ε

)
= EP ∗

(
|ϑ̂i − ϑi| > ε

)
→ 0.

Noting that

1{|ϑi−x|<ε} 6 1{ϑi6x+ε} − 1{ϑi6x−ε},

an application of (S.4.1) shows that uniformly in ε

sup
x

∣∣∣∣∣ 1

m

m∑
i=1

1{|ϑi−x|<ε}

∣∣∣∣∣
6 sup

x

∣∣∣F̂m(x+ ε)− F̂m(x− ε)
∣∣∣ 6 sup

x
|Fϑ(x+ ε)− Fϑ(x− ε)|+ o(1) a.s.

which becomes arbitrarily small for ε→ 0 by the uniform continuity of Fϑ.
The uniform continuity holds by the continuity and the fact that Fϑ(x) = 0
for x 6 0 and Fϑ(x) = 1 for x > 1. Putting everything together yields the
assertion.
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of Theorem 8.2. Note that

E
∣∣∣f̂ϑ̂,m(x)− f̂m(x)

∣∣∣2 = var
(
f̂
ϑ̂,m

(x)− f̂m(x)
)

+
(

E
(
f̂
ϑ̂,m

(x)− f̂m(x)
))2

.

By the boundedness of K and since
∫

1
hK

(
x−c
h

)
dx =

∫
K(x) dx = 1 it holds

for the first term∫
var
(
f̂
ϑ̂,m

(x)− f̂m(x)
)
dx

6
1

mh2

∫
E

(
K

(
x− ϑ̂1
h

)
−K

(
x− ϑ1
h

))2

dx

6
1

mh

(
E

∫
1

h
K

(
x− ϑ̂1
h

)
dx+ E

∫
1

h
K

(
x− ϑ1
h

)
dx

)
=

1

mh
→ 0.

It holds ∫ ∣∣∣∣∣E
(
K (y)−K

(
y +

ϑ1 − ϑ̂1
h

))∣∣∣∣∣ dy 6 2,

as well as by the boundedness and Lipschitz-continuity of the kernel K∣∣∣∣∣E
(
K (y)−K

(
y +

ϑ1 − ϑ̂1
h

))∣∣∣∣∣
= O(1) E

(
min

(
1,

∣∣∣∣∣ϑ1 − ϑ̂1h

∣∣∣∣∣
))

= O(1) E
(

1{|ϑ1−ϑ̂1|>εh}

)
+O(1) E

(∣∣∣∣∣ ϑ̂1 − ϑ1h

∣∣∣∣∣ 1{|ϑ1−ϑ̂1|<εh}
)

6 EP ∗(|ϑ1 − ϑ̂1| > εh) + ε = o(1) + ε

by (8.2) and the dominated convergence theorem. We now conclude∫ (
E
(
f̂m(x)− f̂

ϑ̂,m
(x)
))2

dx

=

∫ [
1

h
E

(
K

(
x− ϑ1
h

)
−K

(
x− ϑ̂1
h

))]2
dx

=

∫ [
E

(
K(y)−K

(
y +

ϑ1 − ϑ̂1
h

))]2
dy = o(1).
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