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Abstract

Approximations of the critical values for change-point tests are obtained through
permutation methods. Both, abrupt and gradual changes are studied in models of
possibly dependent observations satisfying a strong invariance principle, as well as
gradual changes in an i.i.d. model. The theoretical results show that the original
test statistics and their corresponding permutation counterparts follow the same
distributional asymptotics. Some simulation studies illustrate that the permutation
tests behave better than the original tests if performance is measured by the α- and
β-error, respectively.
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1 Introduction

A series of papers has been published on the use of permutation principles for obtaining
reasonable approximations to the critical values of change-point tests. This approach
was first suggested by [1] and later pursued by other authors (cf. [7] for a recent survey).
But, so far, it has mostly been dealt with abrupt changes and independent observations.
In many practical applications, however, smooth (gradual) changes are more realistic,
so are dependent observations.
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1 Introduction

In this paper, we shall discuss the use of permutation principles in the three models
of a gradual change in the mean of i.i.d. observations, an abrupt change in the mean
or variance of a stochastic process resp. a gradual change in the mean of a stochastic
process under strong invariance.

1.1 Gradual change in the mean of independent, identically distributed
(i.i.d.) observations

[8] investigated the following model:

Xi = µ + d

(
i−m

n

)γ

+

+ ei, i = 1, . . . , n, (1.1)

where x+ = max(0, x); µ, d = dn, and m = mn 6 n are unknown parameters, and
e1, . . . , en are i.i.d. random variables with

Eei = 0, 0 < var ei = σ2 (< ∞), E|ei|2+δ < ∞ for some δ > 0. (1.2)

The parameter γ is supposed to be known.

Note that – in contrast to abrupt changes – the biggest difference in the mean here is
not d, but d

(
n−m

n

)γ
, and thus depends on n, m and γ.

One is interested in testing the hypotheses

H0 : m = n vs. H1 : m < n, d 6= 0.

The following test statistic, which is based on the likelihood ratio approach in case of
normal errors {ei}, has been used:

T (1)
n =

1
σ̂n

max
16k<n

∣∣∑n
i=1(i− k)γ

+(Xi −Xn)
∣∣(∑n−k

i=1 i2γ − 1
n

(∑n−k
i=1 iγ

)2)1/2
,

where σ̂n denotes a suitable estimator of σ. Asymptotic critical values for the corre-
sponding test can be chosen according to the following null asymptotics (cf. [8]):

Theorem 1.1. Let X1, X2, . . . be i.i.d. r.v.’s with var X1 = σ2 > 0, and
E |X1|2+δ < ∞ for some δ > 0. Then, for all x ∈ R, as n →∞,

P
(
αnT (1)

n − βn 6 x
)
→ exp

(
−2e−x

)
,

where αn =
√

2 log log n and βn = βn(γ) is as follows:

1. for γ > 1
2 :

βn = 2 log log n + log

(
1
4π

(
2γ + 1
2γ − 1

)1/2
)

;

2. for γ = 1
2 :

βn = 2 log log n +
1
2

log log log log n− log(4π);

2



1 Introduction

3. for 0 < γ < 1
2 :

βn = 2 log log n +
1− 2γ

2(2γ + 1)
log log log n + log

(
C

1/(2γ+1)
γ H2γ+1√

π22γ/(2γ+1)

)
,

with Hγ as in Remark 12.2.10 of [11] (e.g. H1 = 1, H2 = 1/
√

π), and

Cγ = −(2γ + 1)
∫ ∞

0
xγ((x + 1)γ − xγ − γxγ−1) dx.

Moreover, σ̂n is assumed to be an estimator of σ satisfying σ̂n − σ =
oP ((log log n)−1) as n →∞.

1.2 Abrupt change in the mean or variance of a stochastic process under
strong invariance

This model has been considered by [6]. Suppose one observes a stochastic process {Z(t) :
0 6 t < ∞} having the following structure:

Z(t) =

{
at + bY (t) , 0 6 t 6 T ∗,

Z(T ∗) + a∗(t− T ∗) + b∗Y ∗(t− T ∗) , T ∗ < t 6 T,
(1.3)

where a, b, a∗, b∗ are unknown parameters, and {Y (t) : 0 6 t < ∞} resp. {Y ∗(t) : 0 6
t < ∞} are (unobserved) stochastic processes satisfying the following strong invariance
principles:

For every T > 0, there exist two independent Wiener processes {WT (t) : 0 6 t 6 T ∗}
and {W ∗

T (t) : 0 6 t 6 T − T ∗}, and some δ > 0, such that, for T →∞,

sup
06t6T ∗

|Y (t)−WT (t)| = O
(
T 1/(2+δ)

)
a.s. (1.4)

and

sup
06t6T−T ∗

|Y ∗(t)−W ∗
T (t)| = O

(
T 1/(2+δ)

)
a.s. (1.5)

Moreover, we assume Y (0) = 0 and Y ∗(0) = 0. It should be noted that only weak
invariance has been assumed in [6], instead of the strong rates of (1.4) and (1.5), which
are required for later use here. Moreover, the processes {Z(t)}, {Y (t)}, and {Y ∗(t)}
could be replaced by a family of processes {ZT (t)}, {YT (t)}, and {Y ∗T (t)}, T > 0, since
the asymptotic analysis is merely based on the approximating family of Wiener processes
{WT (t)} and {W ∗

T (t)}, respectively.

One is interested in testing the hypothesis of ”no change”, i.e.

H0 : T ∗ = T ,

against the alternative of ”a change in the mean at T ∗ ∈ (0, T )”, i.e.

H
(1)
1 : 0 < T ∗ < T and a 6= a∗ ,
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1 Introduction

resp. ”a change in the variance at T ∗ ∈ (0, T )”, i.e.

H
(2)
1 : 0 < T ∗ < T and b 6= b∗, but a = a∗.

Basic examples satisfying conditions (1.3)-(1.5) are partial sums of i.i.d. random vari-
ables and renewal processes based on i.i.d. waiting times, but also sums of dependent
observations (for details we refer to [6]).

It is assumed, that the process {Z(t) : t > 0} has been observed at discrete time points
ti = ti,N = i T

N , 1 6 i 6 N = N(T ). Let ∆Zi,T = Z(ti) − Z(ti−1) and ∆̃Zi,T =
Z(ti)− Z(ti−1)−∆ZT . The following statistics will be used:

MT = max
16k6N

{
1√
T

1

b̂T

∣∣∣∣∣
k∑

i=1

(
∆Zi,T −∆ZT

)∣∣∣∣∣
}

, (1.6)

where ∆ZT = 1
N

∑N
i=1 ∆Zi,T , and

b̂2
T =

1
T

N∑
i=1

(
∆Zi,T −∆ZT

)2
,

resp.

M̃T = max
16k6N

{
1√
T

1
ĉT

∣∣∣∣∣
k∑

i=1

(
∆̃Z

2

i,T − ∆̃Z
2

T

)∣∣∣∣∣
}

, (1.7)

where ∆̃Z
2

T = 1
N

∑N
i=1 ∆̃Z

2

i,T , and

ĉ2
T :=

1
T

N∑
i=1

(
(∆Zi,T −∆ZT )2 − 1

N

N∑
l=1

(
∆Zl,T −∆ZT

)2)2

.

Remark 1.1. The statistic M̃T uses a slightly different variance estimator ĉ2
T than

the one given in [6]. It possesses, however, the same asymptotic behavior, since the
ratio of the two normalizations converges in probability to 1 under the null hypothesis,
and to some positive constant under the alternative (cf. Theorem 4.5.2 in [9]). This
modification is necessary for applying the permutation method below, since, under the
alternative, the permutation statistic (corresponding to the statistic used in [6]) does
not converge to sup06t61 |B(t)|, but to c sup06t61 |B(t)|, c > 0, c 6= 1 in general, where
c is the asymptotic ratio of the two variance estimators. Here {B(t) : 0 6 t 6 1} denotes
a Brownian bridge.

The following null asymptotics hold under the above conditions (cf. [6]):

Theorem 1.2. If N = N(T ) →∞ and N = o
(
T 1−2/(2+δ)

)
as T →∞, then, under H0,

MT
D→ sup

06t61
|B(t)|,

where {B(t) : 0 6 t 6 1} is a Brownian bridge.

Theorem 1.3. If N = N(T ) → ∞ and N = o
(
T 1/2−1/(2+δ)

)
as T → ∞, then, under

H0,

M̃T
D→ sup

06t61
|B(t)|,

where {B(t) : 0 6 t 6 1} is a Brownian bridge.
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1 Introduction

1.3 Gradual change in the mean of a stochastic process under strong
invariance

This model has been considered by [14]. Suppose one observes a stochastic process
{S(t) : 0 6 t < ∞} having the following structure:

S(t) :=

{
at + bY (t) , 0 6 t 6 T ∗,

S(T ∗) + a∗(t− T ∗) + b∗Y ∗(t− T ∗) , T ∗ < t 6 T,
(1.8)

where a, b, b∗ and {Y (t)}, {Y ∗(t)} are as in model 1.2 above, a∗(t−T ∗) = a(t−T ∗)+d̃(t−
T ∗)1+γ , d̃ = d̃T is unknown, γ > 0 is known. Again, the biggest difference in the mean
here depends on T, T ∗ and γ, similarly as in the first model (1.1). Note that, instead of
(1.4), [14] assumed the following weak invariance principle for the process {Y (t) : 0 6
t < ∞}, namely that, for every T > 0, there is a Wiener process {WT (t) : 0 6 t 6 T ∗}
such that

sup
16t6T ∗

|Y (T ∗)− Y (T ∗ − t)−WT (t)| /t1/(2+δ) = OP (1) (T →∞). (1.9)

The reason is that small approximation rates were required near the change-point T ∗,
but only in a weak sense, whereas we need strong approximations for our permutation
principles below. Here, too, the processes {Z(t)}, {Y (t)}, and {Y ∗(t)} could be replaced
by a family of processes {ZT (t)}, {YT (t)}, and {Y ∗T (t)}, T > 0.

One is now interested in testing the null hypothesis of ”no change in the drift”, i.e.

H0 : T ∗ = T

against the alternative of ”a smooth (gradual) change in the drift”, i.e.

H1 : 0 < T ∗ < T, d̃ 6= 0.

Basic examples fulfilling the conditions above are again partial sums of i.i.d. random
variables and renewal processes based on i.i.d. waiting times (cf. [14] for more details).
As in model 1.2, we assume that we have observed {S(t) : t > 0} at discrete time points
ti = i T

N , and set ∆Si,T = S(ti)− S(ti−1). The following test statistic is used:

T
(2)
N =

√
N

T b̂2
T

max
16k<N

∣∣∑N
i=1(i− k)γ

+(∆Si,T −∆SN )
∣∣(∑N−k

i=1 i2γ − 1
N

(∑N−k
i=1 iγ

)2)1/2
, (1.10)

where ∆ST = 1
N

∑N
i=1 ∆Si,T , and b̂2

T = 1
T

∑N
i=1

(
∆Si,T −∆ST

)2.
[14] assumed a slightly different weight, which is asymptotically equivalent to the one
used above. However, it turns out, that the above weight gives much better results for
the permutation statistic, which is due to the fact, that it is the maximum-likelihood
statistic under Gaussian errors.
The results obtained in [14] remain valid.

Remark 1.2. The magnitude of d̃ is completely different from that of d in the first
model. However, d := d̃(1+ γ)T 1+γ

N is comparable to it, which can easily be seen via the
mean value theorem.
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2 Rank and permutation statistics in case of a gradual change under i.i.d. errors

Similar to Theorem 1.1, the following null asymptotic applies (cf. [14]):

Theorem 1.4. If (1.9) holds, N = N(T ) →∞ and N = O(T ) as T →∞, then, under
H0, for all x ∈ R :

P
(
αNT

(2)
N − βN 6 x

)
→ exp

(
−2e−x

)
,

where αN =
√

2 log log N and βN = βN (γ) is as in Theorem 1.1 (with N replacing n).

2 Rank and permutation statistics in case of a gradual change
under i.i.d. errors

In order to derive distributional asymptotics for the permutation statistics, we shall
make use of the following theorem for the corresponding rank statistics. In the case
γ = 1, it was proven by [13].

Theorem 2.1. Let R = (R1, . . . , Rn) be a random permutation of (1, . . . , n), and
an(1), . . . , an(n) be scores satisfying

1
n

n∑
i=1

(an(i)− an)2 > D1, (2.1)

and

1
n

n∑
i=1

|an(i)− an|2+δ 6 D2, (2.2)

where D1, D2 and δ are some positive constants, and an = 1
n

∑n
i=1 an(i). Then, for fixed

γ > 0 and all x ∈ R, as n →∞

P (αnTn (a)− βn 6 x) → exp
(
−2e−x

)
,

where

Tn (a) =
1

σn(a)
max

16k<n

∣∣∑n
i=1(i− k)γ

+(an(Ri)− an)
∣∣(∑n−k

i=1 i2γ − 1
n

(∑n−k
i=1 iγ

)2)1/2
;

Here σ2
n(a) = 1

n

∑n
i=1 (an(i)− an)2 , the variance of an(R1), αn =

√
2 log log n and

βn = βn(γ) is as in Theorem 1.1.

In the proof of this theorem we apply the following weak embedding:

Theorem 2.2. Let an(1), . . . , an(n) be scores satisfying (2.1) and (2.2). Then, on a rich
enough probability space, there is a sequence of stochastic processes

{
Π̃n(k) : 1 6 k 6 n

}
(n = 1, 2, . . .) with

{
Π̃n(k) : 1 6 k 6 n

}
D=

{
1√

σ2
n(a)

k∑
i=1

(an(πn(i))− an) : 1 6 k 6 n

}
,
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2 Rank and permutation statistics in case of a gradual change under i.i.d. errors

where (πn(1), . . . , πn(n)) is a random permutation of (1, 2, . . . , n), σ2
n(a) := 1

n

∑n
i=1(an(i)−

an)2, an = 1
n

∑n
i=1 an(i), and there is a fixed Brownian bridge {B(t) : 0 6 t 6 1} such

that, for 0 6 ν < min
(

δ
2(2+δ) ,

1
4

)
,

max
16k<n

(
k(n− k)

n

)ν n√
k(n− k)

∣∣∣∣ 1√
n

Π̃n(k)−B(k/n)
∣∣∣∣ = OP (1).

The proof goes along the lines of Theorem 1 of [4], by replacing the Hájek-Rényi in-
equality (cf. [4], p. 110) resp. Lemma 3 there with the following lemmas:

Lemma 2.1. Let M(0) = 0, M(1), . . . ,M(m), m > 1, be a mean 0, square-integrable
martingale, and a(1) > . . . > a(m) > 0 be constants. Then, for 1 < s 6 2 and λ > 0,

P

(
max

16i6m
ai|M(i)| > λ

)
6 2s−1 1

λs

m∑
i=1

as
i E |M(i)−M(i− 1)|s .

Proof. Confer Lemma 1 in [5], or Lemma 5.1.2 in [9] together with [3].

Lemma 2.2. Let an(1), . . . , an(n) be scores with
∑n

i=1 an (i) = 0, and
(πn (1) , . . . , πn (n)) be a random permutation as in Theorem 2.2. Then, for 1 6 i 6 n
and 1 6 s 6 2,

E
∣∣∣ i∑

j=1

an (πn (j))
∣∣∣s 6 2 min (i, n− i)

1
n

n∑
j=1

|an (j)|s .

Proof. Confer Lemma 5.1.3. in [9] and [12].

Now we have the tools to prove Theorem 2.1:

Proof Theorem 2.1. First note that

n

n−k∑
i=1

i2γ −

(
n−k∑
i=1

iγ

)2

= (n− k)
n−k∑
i=1

iγ − 1
n− k

n−k∑
j=1

jγ

2

+ k

n−k∑
i=1

i2γ

> k

∫ n−k

0
x2γdx = k

1
2γ + 1

(n− k)2γ+1.

(2.3)

Now, from Theorem 2.2 with ν = 0, uniformly in k ∈ [1, n
2 ] :

1
σn(a)

k∑
i=1

(an (Rn−i+1)− an) =
√

nB

(
k

n

)
+ OP

(√
k(n− k)

n

)

=
√

nB

(
k

n

)
+ OP

(√
k
)

.

Since
{√

nB
(

k
n

)
: k = 0, . . . , n

} D=
{
W (k)− k

nW (n) : k = 0, . . . , n
}

, where {W (t) : t >

7



2 Rank and permutation statistics in case of a gradual change under i.i.d. errors

0} is a standard Wiener process, we conclude from the law of the iterated logarithm

1
σn(a)

max
n−log n<k<n

∣∣∑n
i=1(i− k)γ

+(an(Ri)− an)
∣∣(∑n−k

i=1 i2γ − 1
n

(∑n−k
i=1 iγ

)2)1/2

=
1

σn(a)
max

1<k<log n

∣∣∑k
l=1(l

γ − (l − 1)γ)
∑k−l+1

i=1 (an(Rn−i+1)− an)
∣∣(∑k

i=1 i2γ − 1
n

(∑k
i=1 iγ

)2)1/2

= OP

(
max

1<k<log n

∣∣∑k
l=1(l

γ − (l − 1)γ)
(
W (k − l + 1)− k−l+1

n W (n)
) ∣∣(∑k

i=1 i2γ − 1
n

(∑k
i=1 iγ

)2)1/2

)

+ OP

(
max

1<k<log n

∣∣∑k
l=1(l

γ − (l − 1)γ)
√

k − l + 1
∣∣(∑k

i=1 i2γ − 1
n

(∑k
i=1 iγ

)2)1/2

)

= oP

(√
log log n

)
.

Hence it suffices to investigate the maximum over k ∈ [1, n− log n]. Let

T̂n := max
16k6n−log n

∣∣∑n
i=1(i− k)γ

+(Xi − 1
n

∑n
l=1 Xl)

∣∣(∑n−k
i=1 i2γ − 1

n

(∑n−k
i=1 iγ

)2
)1/2

resp.

T̃n := max
16k6n−log n

∣∣∣∑n
i=1(i− k)γ

+

(
Π̃n(i)− Π̃n(i− 1)

)∣∣∣(∑n−k
i=1 i2γ − 1

n

(∑n−k
i=1 iγ

)2
)1/2

be the corresponding test statistics based on i.i.d. N(0, 1) random variables Xi resp.
on the distributionally equivalent versions of an(Ri). We choose Xi such that B

(
k
n

)
=

1√
n

(∑k
i=1 Xi − k

n

∑n
i=1 Xi

)
, with {B(t)} denoting the Brownian bridge of Theorem 2.2.

By the same application of the law of the iterated logarithm as above,

max
n−log n6k6n

∣∣∑n
i=1(i− k)γ

+(Xi − 1
n

∑n
i=1 Xi)

∣∣(∑n−k
i=1 i2γ − 1

n

(∑n−k
i=1 iγ

)2)1/2
= oP

(√
log log n

)
.

Since αnT̃n − βn =
(
αnT̂n − βn

)
+ αn

(
T̃n − T̂n

)
, and since Theorem 1.1 implies that

αnT̂n − βn has a limiting Gumbel distribution, it suffices to show that αn

(
T̃n − T̂n

)
=

oP (1). We set Yin := Π̃n(i) − Π̃n(i − 1) − (Xi − Xn), where Xn = 1
n

∑n
i=1 Xi, and

8



2 Rank and permutation statistics in case of a gradual change under i.i.d. errors

Sn(l) :=
∑l

i=1 Yin. Then,∣∣∣T̃n − T̂n

∣∣∣
6 max

16k6n−log n

√√√√ n

n
∑n−k

i=1 i2γ −
(∑n−k

i=1 iγ
)2

∣∣∣∣∣
n∑

i=1

(i− k)γ
+Yin

∣∣∣∣∣
6 max

16k6n−log n

√√√√ n

n
∑n−k

i=1 i2γ −
(∑n−k

i=1 iγ
)2

n−k∑
l=1

|Sn(l + k − 1)|(lγ − (l − 1)γ)

6 max
16k<n

(
k(n− k)

n

)ν n√
k(n− k)

∣∣∣∣ 1√
n

Π̃n(k)−B

(
k

n

)∣∣∣∣
× max

16k6n−log n
nν

n−k∑
l=1

((l + k − 1)(n− l − k + 1))1/2−ν√
n
∑n−k

i=1 i2γ −
(∑n−k

i=1 iγ
)2

(lγ − (l − 1)γ),

where 0 < ν < min
(

δ
2(2+δ) ,

1
4

)
as in Theorem 2.2. This theorem also implies

max
16k<n

(
k(n− k)

n

)ν n√
k(n− k)

∣∣∣∣ 1√
n

Π̃n(k)−B

(
k

n

)∣∣∣∣ = OP (1),

which means, that it suffices to show

max
16k6n−log n

nν
n−k∑
l=1

((l + k − 1)(n− l − k + 1))1/2−ν√
n
∑n−k

i=1 i2γ −
(∑n−k

i=1 iγ
)2

(lγ − (l − 1)γ)

= o
(
(log log n)−1/2

)
.

The latter rate can be obtained through a straightforward calculation, taking (2.3) into
account together with the following estimate:

n

n−k∑
i=1

i2γ −

(
n−k∑
i=1

iγ

)2

> cγn(n− k)2γ+1 for all n > nγ , (2.4)

where cγ > 0 and nγ depends only on γ. This completes the proof. For details we refer
to [9], Corollary 5.2.3.

We are now ready to study the following permutation statistic:

T (1)
n (R) =

1
σ̂n

max
16k<n

∣∣∑n
i=1(i− k)γ

+(XRi −Xn)
∣∣(∑n−k

i=1 i2γ − 1
n

(∑n−k
i=1 iγ

)2)1/2
,

where R = (R1, . . . , Rn) is a random permutation of (1, . . . , n). We consider now the
conditional distribution of T

(1)
n (R) given the original observations X1, . . . , Xn, i.e. the

randomness is only generated by the random permutation R = (R1, . . . , Rn).

The following theorem proves that this statistic conditionally on the given observations
has a.s. the same asymptotic behavior - both under the null hypothesis and under the
alternative - as that of T

(1)
n under the null hypothesis (cf. Theorem 1.1).

9



2 Rank and permutation statistics in case of a gradual change under i.i.d. errors

Theorem 2.3. Let X1, . . . , Xn be observations satisfying (1.1) and (1.2). Moreover, let
|d | = |dn| 6 D. Then, for all x ∈ R, as n →∞,

P
(
αnT (1)

n (R)− βn 6 x
∣∣X1, . . . , Xn

)
→ exp(−2e−x) a.s.,

where αn, βn = βn(γ) are as in Theorem 1.1.

Proof. It is sufficient to verify the assumptions of Theorem 2.1 with an(i) = Xi,
i = 1, . . . , n. First we have

Xn = µ + en + dnn−γ−1
n∑

l=1

(l −mn)γ
+.

Hence

1
n

n∑
i=1

(Xi −Xn)2

>
1
n

n∑
i=1

(ei − en)2 + 2dnn−γ 1
n

n∑
i=1

(i−mn)γ
+ei − 2dnn−γ−1

n−mn∑
l=1

lγ
1
n

n∑
i=1

ei.

It is enough to show that the second term converges to 0 a.s., because then, by the
strong law of large numbers,

lim inf
n→∞

1
n

n∑
i=1

(Xi −Xn)2 > var e1 a.s.

Now, by partial summation,

n∑
i=1

(i−mn)γ
+ei = Sn(n−mn)γ

+ −
n−1∑
i=1

Si

(
(i + 1−mn)γ

+ − (i−mn)γ
+

)
, (2.5)

where Si :=
∑i

j=1 ej , and, from the law of the iterated logarithm,

1
nγ+1

n−1∑
i=1

Si

(
(i + 1−mn)γ

+ − (i−mn)γ
+

)
= O

(
1

nγ+1

n−1∑
i=1

i3/4
(
(i + 1−mn)γ

+ − (i−mn)γ
+

))
= o(1) a.s.,

where the last estimate follows via the mean value theorem. Using (2.5) together with
the strong law of large numbers, we get indeed, as n →∞,

dn

nγ+1

n∑
i=1

(i−mn)γ
+ei

=
dn(n−mn)γ

+

nγ

Sn

n
− dn

nγ+1

n−1∑
i=1

Si

(
(i + 1−mn)γ

+ − (i−mn)γ
+

)
→ 0 a.s.

10



3 Permutation statistics for changes of stochastic processes under strong invariance

On the other hand, for suitable constants c and C, and n > n0,

1
n

n∑
i=1

∣∣Xi −Xn

∣∣2+δ

=
1
n

n∑
i=1

∣∣∣ei − en + dnn−γ
(
(i−mn)γ

+ − 1
n

n∑
l=1

(l −mn)γ
+

)∣∣∣2+δ

6 c
1
n

n∑
i=1

|ei|2+δ + c|en|2+δ + c d2+δ
n n−2γ−δγ−1

n−mn∑
i=1

i2γ+γδ

+ c d2+δ
n n−2γ−δγ−2−δ

( n−mn∑
l=1

lγ
)2+δ

6 C a.s.

An application of Theorem 2.1 now completes the proof.

3 Permutation statistics for changes of stochastic processes
under strong invariance

Next we study models 1.2 and 1.3. For model 1.2, we first need to investigate the
asymptotic behavior of the corresponding rank statistic:

Theorem 3.1. Let (R1, . . . , Rn) be a random permutation of (1, . . . , n), and an(1), . . . , an(n)
be scores satisfying the following conditions:

n∑
i=1

an(i) = 0,
1
n

n∑
i=1

a2
n(i) → 1, (3.1)

and

1
n

max
16i6n

a2
n(i) → 0. (3.2)

Then, as n →∞,

max
16k6n

1√
n

∣∣∣ k∑
i=1

an(Ri)
∣∣∣ D→ sup

06t61
|B(t)| ,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Proof. It follows from Theorem 24.2 in [2].

Lemma 3.1. 1. Let X1n, . . . , Xnn be independent r.v.’s with EX4
in 6 D < ∞ for all

i, n. Then

1
n

n∑
i=1

(Xin − EXin) → 0 a.s. (n →∞).

11



3 Permutation statistics for changes of stochastic processes under strong invariance

2. Let {Wn(t): t > 0}, n ∈ N, be Wiener processes and f be a function of n, then

Wn(f(n)) = O
(√

f(n) log n
)

a.s. (n →∞).

Proof.

1. It follows immediately from Markov’s inequality.

2. Cf. [9], Theorem 10.0.2.

In the sequel we assume that there is a 1-1-correspondence between N and T, which is
necessary to get a countable triangular array in N, and, in turn, allows us to use the
preceding lemma.
Moreover, we assume T ∗ = θT , 0 < θ 6 1, and N = o(T 1−2/(2+δ)). Let N∗ = bNT ∗

T c =
θN(1 + o(1)) and

∆Yi =


b
(
Y
(
i T
N

)
− Y

(
(i− 1) T

N

))
, i 6 N∗,

b(Y (T ∗)− Y (N∗T
N )) + b∗Y ∗( (N∗+1)T

N − T ∗) , i = N∗ + 1,

b∗
(
Y ∗
(
i T
N − T ∗

)
− Y ∗

(
(i− 1) T

N − T ∗
))

, i > N∗ + 2.

(3.3)

Lemma 3.2. 1. It holds, as N →∞,

∆Y =
1
N

N∑
i=1

∆Yi = O

(√
T log N

N

)
a.s.

2. a) For s = 2, 3, 4, as N →∞,

N (s−2)/2

T s/2

N∑
i=1

(∆Yi)
s → EW (1)s (θbs + (1− θ)(b∗)s) a.s.,

where W (1) has a standard normal distribution.

b) For ν > 0, as N →∞,

N (ν−2)/2

T ν/2

N∑
i=1

∣∣∆Yi −∆Y
∣∣ν = O(1) a.s.

3. For ν > 0, as N →∞,

N (ν−2)/2

T ν/2
max

16i6N

∣∣∆Yi −∆Y
∣∣ν = o(1) a.s.

Proof. The proof makes use of (1.3) – (1.5) in combination with Lemma 3.1 (for details
confer [9], Theorem 10.0.1).
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3 Permutation statistics for changes of stochastic processes under strong invariance

We are now prepared to investigate the following permutation statistics

MT (R) = max
16k6N

{ 1√
T

1

b̂T

∣∣∣ k∑
i=1

(
∆ZRi,T −∆ZT

) ∣∣∣},

and

M̃T (R) = max
16k6N

{ 1√
T

1
ĉT

∣∣∣ k∑
i=1

(
∆̃Z

2

Ri,T − ∆̃Z
2

T

)∣∣∣}.

Here again, R = (R1, . . . , Rn) denotes a random permutation of (1, . . . , n).

Theorem 3.2. Let {Z(t) : t ≥ 0} be a process according to model (1.3). Let T ∗ = θT ,
0 < θ 6 1, N = o(T 1−2/(2+δ)), and in 2 also a = a∗. Then, for all x ∈ R, as T →∞,

1.

P
(
MT (R) 6 x

∣∣Z(t), 0 6 t 6 T
)
→ P

(
sup

06t61
|B(t)| 6 x

)
a.s.

2.

P
(
M̃T (R) 6 x

∣∣Z(t), 0 6 t 6 T
)
→ P

(
sup

06t61
|B(t)| 6 x

)
a.s.,

where {B(t) : 0 6 t 6 1} is a Brownian bridge.

Proof. First note that, for the increments of {Z(t)}, we have

∆Zi,T =


a T

N + ∆Yi , i 6 N∗,

a
(
T ∗ −N∗ T

N

)
+ a∗

(
(N∗ + 1) T

N − T ∗
)

+ ∆YN∗+1 , i = N∗ + 1,

a∗ T
N + ∆Y ∗i , i > N∗ + 2,

with ∆Yi as in (3.3).

Now, for the proof of 1, consider the scores aN (i) = 1
b̂T

√
N
T (∆Zi,T−∆Zi,T ), i = 1, . . . , N.

Obviously,
∑N

i=1 aN (i) = 0 and 1
N

∑N
i=1 a2

N (i) = 1, which means that it is sufficient to
verify assumption (3.2) of Theorem 3.1.

In the sequel, c and C denote suitable constants which may be different in different

13



3 Permutation statistics for changes of stochastic processes under strong invariance

places. We first consider the case θ < 1 and a 6= a∗. Here, for sufficiently large T,

b̂2
T =

1
T

N∑
i=1

∆Z2
i,T − N

T
∆T Z

2

=
1
T

N∑
i=1

∆a2
i −

N

T
∆a

2 +
1
T

N∑
i=1

(∆Yi)2 −
N

T
(∆Y )2

− 2
1
T

(aT ∗ + a∗(T − T ∗))∆Y

+
2ab

N
Y

(
N∗ T

N

)
+

2a∗b∗

N

(
Y ∗(T − T ∗)− Y ∗

(
(N∗ + 1)

T

N
− T ∗

))
+

2
T

(
a

(
T ∗ −N∗ T

N

)
+ a∗

(
(N∗ + 1)

T

N
− T ∗

))
∆YN∗+1

> c
T

N
a.s.,

(3.4)

where

∆ai =


a T

N , i 6 N∗,

a
(
T ∗ −N∗ T

N

)
+ a∗

(
(N∗ + 1) T

N − T ∗
)

, i = N∗ + 1,

a∗ T
N , i > N∗ + 2,

and ∆a = 1
N

∑N
i=1 ∆ai = 1

N (aT ∗ + a∗(T − T ∗)). The last inequality in (3.4) follows
from the fact that the first terms are the dominating ones. Indeed, since θ < 1, a 6= a∗,
for T sufficiently large,

1
T

N∑
i=1

∆a2
i −

N

T
∆a

2

> a2 T

N2
N∗ + a∗

T

N2
(N −N∗ − 1)

− a2 (T ∗)2

TN
− (a∗)2

(T − T ∗)2

TN
− 2aa∗

T ∗(T − T ∗)
TN

= (1 + o(1))
(

a2 T

N
θ(1− θ) + (a∗)2

T

N
θ(1− θ)− 2aa∗

T

N
θ(1− θ)

)
− (a∗)2T

N2

= (1 + o(1))
(

T

N
θ(1− θ)(a− a∗)2

)
− (a∗)2

T

N2

> c
T

N
a.s.

(3.5)

Next we prove that the other terms are of smaller order and hence are negligible.
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3 Permutation statistics for changes of stochastic processes under strong invariance

Lemma 3.1 2 gives

2ab

N
Y

(
N∗ T

N

)
+

2a∗b∗

N

(
Y (T − T ∗)− Y

(
(N∗ + 1)

T

N
− T ∗

))
=

2ab

N
WT

(
N∗ T

N

)
+

2a∗b∗

N

(
W ∗(T − T ∗)−W ∗

(
(N∗ + 1)

T

N
− T ∗

))
+ O

(
T 1/(2+δ)

N

)

= O

(√
T log N

N

)
a.s.

(3.6)

Since T ∗ −N∗ T
N 6 T

N and (N∗ + 1) T
N − T ∗ 6 T

N , we also get∣∣∣∣ 2T
(

a

(
T ∗ −N∗ T

N

)
+ a∗

(
(N∗ + 1)

T

N
− T ∗

))
∆YN∗+1

∣∣∣∣
6

2
N

(|a|+ |a∗|)

(
|b|
∣∣∣∣W (T ∗)−W

(
N∗ T

N

)∣∣∣∣
+ |b∗|

∣∣∣∣W ∗
(

(N∗ + 1)
T

N
− T ∗

)∣∣∣∣
)

+ O

(
T 1/(2+δ)

N

)

= O

(√
T log N

N

)
a.s.

(3.7)

Lemma 3.2 further implies

1
T

N∑
i=1

(∆Yi)2 −
N

T
(∆Y )2 − 2

1
T

(aT ∗ + a∗(T − T ∗))∆Y

= O

(
1 +

log N

N
+
√

T log N

N

)
a.s.,

which proves (3.4). Note that

∆ai −∆a =


(a− a∗)T−T ∗

N , i 6 N∗,

(a− a∗)ϑT−T ∗

N , i = N∗ + 1,

(a∗ − a)T ∗

N , i > N∗ + 2,

for some 0 6 ϑ 6 1, hence

max
16i6N

(∆ai −∆a)2 =


(

T−T ∗

N (a− a∗)
)2

, T ∗ 6 T/2,(
T ∗

N (a− a∗)
)2

, T ∗ > T/2.

On combining (3.4), Lemma 3.2 1 and Lemma 3.2 2a we finally get (3.2), since

1
N

max
16i6N

a2
N (i) 6 2

1

T b̂2
T

max
16i6N

(∆ai −∆a)2 + 2
1

T b̂2
T

max
16i6N

(∆Yi −∆Y )2

6
2
c

1
N

(a− a∗)2 +
2
c

N

T

(
1
T

N∑
i=1

(∆Yi)2 −
N

T
(∆Y )2

)
→ 0 a.s.

(3.8)
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3 Permutation statistics for changes of stochastic processes under strong invariance

On the other hand, if θ = 1 or a = a∗, we obtain from Lemma 3.2,

b̂2
T =

1
T

N∑
i=1

(∆Zi,T −∆T Z)2 =
1
T

N∑
i=1

(∆Yi)2 −
N

T
(∆Y )2

→ θb2 + (1− θ)(b∗)2 > c > 0 a.s.,

(3.9)

for T sufficiently large. Using Lemma 3.2 3, we arrive at (3.2), i.e.

1
N

max
16i6N

a2
N (i) =

1

b̂2
T T

max
16i6N

(∆Yi −∆Y )2

→ 0 a.s.,
(3.10)

which completes the proof of 1.

For the proof of 2, consider
aN (i) = 1√

TbcT

((
∆Yi −∆Y

)2 − 1
N

∑N
l=1

(
∆Yl −∆Y

)2). It suffices again to verify the
assumptions of Theorem 3.1.

Since a = a∗, we get 1
N

∑N
i=1 a2

N (i) = 1. Similarly as above, Lemma 3.2 gives

N

T 2

N∑
i=1

(
∆Yi −∆Y

)4 → 3
(
θb4 + (1− θ)(b∗)4

)
a.s.,

and

(̂bT )2 =

(
1
T

N∑
i=1

(∆Yi)2 −
N

T
∆Y

2

)2

→
(
θb2 + (1− θ)(b∗)2

)2 a.s. (3.11)

From Jensen’s inequality we conclude

lim
T→∞

N

T
ĉ2
T = lim

T→∞

(
N

T 2

N∑
i=1

(
∆Yi −∆Y

)4 − (̂b2
T )2
)

= 3(θb4 + (1− θ)(b∗)4)− (θb2 + (1− θ)(b∗)2)2

> 2(θb4 + (1− θ)(b∗)4) > 0 a.s.

So, an application of Lemma 3.2 results in

1
N

max
16k6N

a2
N (k) =

1
T ĉ2

T

max
16k6N

((
∆Yk −∆Y

)2 − 1
N

N∑
i=1

(
∆Yi −∆Y

)2)2

6 C

N

T 2
max

16k6N
(∆Yk −∆Y )4 +

1
N

(
1
T

N∑
i=1

(∆Yi −∆Y )2
)2


→ 0 a.s.,

which completes the proof of 2.

Finally we turn to model 1.3 and investigate the permutation analogue of (1.10), i.e. the
statistic

T
(2)
N (R) =

√
N

T b̂2
T

max
16k<N


∣∣∣∑N

i=1(i− k)γ
+(∆SRi,T −∆SN )

∣∣∣(∑N−k
i=1 i2γ − 1

N

(∑N−k
i=1 iγ

)2)1/2

 .

The following asymptotic applies:
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3 Permutation statistics for changes of stochastic processes under strong invariance

Theorem 3.3. Let {S(t) : t ≥ 0} be a process according to model (1.8). Assume T ∗ =
θT , 0 < θ 6 1, and N

√
log N = o(min(T 1−2/(2+δ), T 1/2+γ)). Then, for all x ∈ R, as

T →∞,

P
(
αNT

(2)
N (R)− βN 6 x

∣∣S(t), 0 6 t 6 T
)
→ exp(−2e−x) a.s.,

where αN , βN = βN (γ) are as in Theorem 1.1 (with N replacing n).

Proof. First note that, for the increments of {S(t)}, we have

∆Si,T =


∆Yi , i 6 N∗,

∆YN∗+1 + d̃
(

(N∗+1)T
N − T ∗

)1+γ
, i = N∗ + 1,

∆Y ∗i + d̃

((
iT
N − T ∗

)1+γ −
(

(i−1)T
N − T ∗

)1+γ
)

, i > N∗ + 2.

In case of the null hypothesis, i.e. for θ = 1, we can immediately verify the assumptions

of Theorem 2.1 for an(i) :=
√

N
T ∆Si,T by using Lemma 3.2.

On the other hand, in case of θ < 1, we use an(i) := N
T 1+γ ∆Si,T . First, via the mean

value theorem,

N1+δ

T (1+γ)(2+δ)

(
N∑

i=N∗+2

∣∣∣∣(i T

N
− T ∗

)1+γ
−
(
(i− 1)

T

N
− T ∗

)1+γ
∣∣∣∣2+δ

+
∣∣∣∣(N∗ + 1)

T

N
− T ∗

∣∣∣∣(1+γ)(2+δ)
)

= O
( N1+δ

T (1+γ)(2+δ)
N

T (1+γ)(2+δ)

N2+δ

)
= O(1),

which, together with Lemma 3.2, gives

1
N

N∑
i=1

∣∣∣∣ N

T 1+γ
∆Si,T − N

T 1+γ
∆Sn

∣∣∣∣2+δ

= O(1) a.s.

In order to verify the second assumption of Theorem 2.1, we first realize, by using partial

17



3 Permutation statistics for changes of stochastic processes under strong invariance

summation, the mean value theorem and Lemmas 3.1 resp. 3.2, that

N

T 2+2γ

(
N∑

i=N∗+2

∆Yi

((
iT

N
− T ∗

)1+γ

−
(

(i− 1)T
N

− T ∗
)1+γ

)

+ ∆YN∗+1

(
(N∗ + 1)T

N
− T ∗

)1+γ
)

=
N2

T 2+2γ
∆Y

(
(T − T ∗)1+γ −

(
N − 1

N
T − T ∗

)1+γ
)

− N

T 2+2γ

N−1∑
k=N∗+2

(
bY (T ∗) + b∗Y ∗

(
k

T

N
− T ∗

))

·

((
(k + 1)

T

N
− T ∗

)1+γ

− 2
(

k
T

N
− T ∗

)1+γ

+
(

(k − 1)
T

N
− T ∗

)1+γ
)

− N

T 2+2γ

(
bY (T ∗) + b∗Y ∗

(
(N∗ + 1)

T

N
− T ∗

))
·

((
(N∗ + 2)

T

N
− T ∗

)1+γ

− 2
(

(N∗ + 1)
T

N
− T ∗

)1+γ
)

= o(1) + O

(
1

T 1+γ

N∑
k=N∗+1

∣∣∣∣bY (T ∗) + b∗Y ∗
(

k
T

N
− T ∗

)∣∣∣∣
)

= o(1) + O

(
N
√

log N

T 1/2+γ

)
+ O

(
NT 1/(2+δ)

T 1+γ

)
= o(1) a.s.

(3.12)

Next we have

N

T 2+2γ

(
N∑

i=N∗+2

((
i
T

N
− T ∗

)1+γ

−
(

(i− 1)
T

N
− T ∗

)1+γ
)2

+
(

(N∗ + 1)
T

N
− T ∗

)2(1+γ)
)

>
1
N

(1 + γ)2
N−1∑

i=N∗+1

(
i

N
− θ

)2γ

>
1
N

(1 + γ)2
∫ N−1

N∗

( x

N
− θ
)2γ

dx

= (1 + o(1))
(1 + γ)2

2γ + 1
(1− θ)2γ+1,
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which shows that

d̃2N

T 2+2γ

(
N∑

i=N∗+2

((
i
T

N
− T ∗

)1+γ

−
(

(i− 1)
T

N
− T ∗

)1+γ
)2

+
(

(N∗ + 1)
T

N
− T ∗

)2(1+γ)
)

− d̃2N2

T 2+2γ

(
1
N

(T − T ∗)1+γ

)2

> (1 + o(1))
(1− θ)2γ+1

2γ + 1
(
γ2 + θ(2γ + 1)

)
.

(3.13)

On combining (3.12), (3.13) and Lemma 3.2, we get indeed, for large T,

N

T 2+2γ

N∑
i=1

(
∆Si,T −∆Sn

)2
> c(θ)

with some c(θ) > 0, which completes the proof.

4 Simulations

So far, we have only proven that the permutation principle is asymptotically applicable
for processes satisfying models 1.1 to 1.3. Now we want to describe the results of some
simulation studies to get an idea, how good the permutation method is in comparison to
the original method. However, we abstain from giving the results in the i.i.d. case here
due to limitation of space. The results are very similar to those of the gradual change,
in particular for the case of partial sums.

4.1 Change in the mean of a stochastic process under strong invariance

The following simulations are based on partial sums of normally distributed random
variables (with variance 1) (cf. [6], Example 1.1), and on a Poisson process (cf. [6],
Example 1.2). More specifically, we simulated the increments of the partial sums as
i.i.d. r.v.’ s, and the increments of the Poisson process were taken at times 1, 2, . . .
(instead of i T

N , i = 1, . . . , N , since this means only a scaling of the underlying r.v.’ s).
Other than that, we used the following parameters:

1. N = 100, 200

2. N∗ = 1
4N , 1

2N , 3
4N

3. d := a∗ − a = 0, 1, 2, 3, 4

Here N∗ is the change-point, and we are in the case of the null hypothesis for d = 0.

Due to similarity of results and limitation of space we present only a small part of
the simulation study in Figures 4.1 and 4.2 and just show some graphs for the sake
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(1) Partial Sum (2) Poisson Process

Figure 4.1: QQ-Plots of MT (under H0) against MT (R) for N = 100, N∗ = 75

of visualization. For Tables containing simulated critical values for the null hypothesis
as well as permutational quantiles, we refer the interested reader to [10]. In the latter
preprint, we also discuss the i.i.d. case and give simulated α– resp. β–errors for both
methods, the asymptotic and the permutational one.

Since we were interested in getting a better impression of how well the permutational
distribution fits the real null distribution, we created quantile-quantile-plots of the one
against the other. More precisely, we did the following:

1. Exact distribution: Determine the empirical distribution function of MT (under
H0) based on 10 000 samples of length N .

2. Permutation distribution: Determine the empiricaldistribution function of MN (R)
(under particular realizations of H0 or H1) based on 10 000 permutations.

3. Draw a QQ-plot of the null distribution from step 1 against the permutation dis-
tributions from step 2. Different colors represent different changes in the mean.

The results are to be found in Figure 4.1.

We realize, that the permutation distribution fits the null distribution very well. More-
over, the result does not depend on the alternative.

Next we were interested in how well the test performs – and also how well it performs in
comparison to the asymptotic one. For this reason we created size-power-curves of both
methods under the null hypothesis and under alternatives.

We created these curves using the following algorithm:

1. Simulate process Z of length N according to model (1.3).

2. Calculate the empirical distribution function of the permutation statistic MT (R, X)
based on 10 000 permutations.

3. Calculate M = MT (Z), i.e. the values of the statistic for our sample Z.

4. Calculate the p-value of M with respect to the asymptotic distribution, i.e. P
(
sup06t61 |B(t)| > M

)
.
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(1) Partial Sum (2) Poisson Process

Figure 4.2: Size-power-curves of MT (R) with respect to the asymptotic distribution and
with respect to the permutation distribution for N = 100, N∗ = 75

5. Calculate the p-value of M with respect to the permutation distribution from step
2, i.e. P (MT (R) > M).

6. Plot the empirical distribution function of the p-values from step 4 resp. 5 based
on 1000 repetitions in the interval (0, 0.2).

We did this for samples under the null hypothesis and various alternatives, for partial
sums as well as Poisson processes.

What we get is a plot that shows the actual α–errors resp. 1− (β–errors) on the y-axis
for the chosen quantiles on the x-axis, i.e. a plot that demonstrates very well the power
of the test. So, the graph for the null hypothesis should be close to the diagonal (which
is given by the dotted line), and the alternatives should be as steep as possible.

The results are presented in Figure 4.2.

On comparing the asymptotic quantiles with the simulated null quantiles we realize,
that they are too small. This is also confirmed by the size-power-curves. Even though
both methods apparently perform well, we do have a better fit under the permutation
method. Under the null hypothesis (d = a∗ − a = 0), the solid line (representing the
permutation method) fits better to the dotted line (the one we wish to get). Moreover,
under alternatives the lines representing the permutation method are also steeper, which
means that the power of this test is better than the power of the asymptotic one.

Moreover, we were interested in the standard deviation of the critical values obtained by
the permutation method. Under the null hypothesis (Poisson process, N=100), we got
a standard deviation of 0.01 for the 90%-quantile and of 0.019 for the 99%-quantile; for
the partial sums the standard deviation was even smaller. The results are comparable
for different parameters. As before, we used 1 000 repetitions of step 1 to 4 of the first
simulation above.

Computing time is not a problem here. For example, the calculation of the permutation
quantiles for a series of length 100 takes approximately 3 seconds, and for length 200
approximately 5 seconds, using a Celeron with 466 MHz and 384 MB RAM and the
software package R, Version 1.2.3.
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4.2 Gradual change in the mean of a stochastic process under strong
invariance

The following simulations are based on partial sums of normally distributed r.v. (with
variance 1) (cf. [14], Example 1.1) and on a Poisson process (cf. [14], Example 1.2).
More precisely, we simulated the increments of the partial sums as i.i.d. r.v.’ s, and
the increments of the Poisson process were taken at times 1, 2, . . . (instead of i T

N , i =
1, . . . , N , as above). The following parameters were chosen:

1. N = 100, 200

2. N∗ = 1
4N , 1

2N , 3
4N

3. d = 0, 1
4 , 1

2 , 1, 2, 4

Here N∗ is the change-point, and the null hypothesis is given for d = 0. The parameter
d has been rescaled as in Remark 1.2. More precisely, the increments of the change were
chosen as d

(1+γ)Nγ

(
(i−N∗)1+γ

+ − ((i− 1)−N∗)1+γ
+

)
. Note that the latter expression

depends on T only through N.

As in Section 4.1 we created QQ-Plots of the simulated null distribution vs. various
permutation distributions in order to get an idea on how well the approximation fits.
The results can be found in Figure 4.3.

We realize that the matches (and thus the critical values) are quite good, but decline, if
γ < 1, as the change becomes more obvious. On the other hand this leads to a greater
power of the test, since the critical values are only too small if we are already under an
alternative.

Moreover we have some kind of ”step behavior” for the Poisson process. Apparently
there are several permutations leading to the same maximal value (i.e. the value of the
statistic). This, however, does not seem to influence the accuracy of the quantiles as will
be shown by the size-power-curves below. Remember that there are 10 000 points in the
plot.

Note that here (in contrast to the i.i.d case) the consistency of the test is not guar-
anteed, since the estimator for b is unbounded under the alternative (which violates
condition (2.4) of [14]).

This is why we were also interested in the power of the test. As in Section 4.1 we created
size-power-curves of the asymptotic method as well as the permutation method. Note
that for γ = 0.25 we do not know the asymptotic quantiles, since H0.25 is not known.

The results can be found in Figure 4.4.

First of all we realize, that the test gives good results for γ = 0.25, where we do not
have the asymptotic test available. Also for γ = 0.5 the permutation test performs
quite well, while the α-errors of the asymptotic one are far too high. For γ > 1 both
methods perform well, although the power under the permutation method is always
greater than the power under the asymptotic method. The plot on (0, 1) also shows,
that the asymptotic curve (in contrast to the permutational one) is too high between
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(1) Partial Sum, γ = 0.25 (2) Poisson Process, γ = 0.25

(3) Partial Sum, γ = 0.5 (4) Poisson Process, γ = 0.5

(5) Partial Sum, γ = 1 (6) Poisson Process, γ = 1

(7) Partial Sum, γ = 2 (8) Poisson Process, γ = 2

Figure 4.3: QQ-Plots of T
(2)
N (under H0) against T

(2)
n (R) for N = 100, N∗ = 75
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(1) Partial Sum, γ = 0.25 (2) Poisson Process, γ = 0.25

(3) Partial Sum, γ = 0.5 (4) Poisson Process, γ = 0.5

(5) Partial Sum, γ = 1 (6) Poisson Process, γ = 1

(7) Partial Sum, γ = 2 (8) Poisson Process, γ = 2

Figure 4.4: Size-power-curves of T
(2)
N (R) with respect to the asymptotic distribution and

with respect to the permutation distribution for N = 100, N∗ = 75
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0.15 and 1. However, this is not a problem for the test, since one would hardly choose
any critical value in that range.

We also notice that the power declines with increasing γ; for γ = 2 it is almost impossible
to distinguish between any alternatives. However this is not surprising, since for γ = 2
(and N∗ = 3

4N) we have an effective mean difference of approximately d
16 , which is not

very much.

When we used d̃, instead of d, and T = N (which changes d̃ slightly), the critical values
decreased significantly. Nevertheless, this did not seem to affect the permutation method
at all – apparently the permutation quantiles were still smaller than the value of the test
statistic for the unpermuted observations. With the asymptotic method, however, we
only obtained good β-errors for smaller d̃’ s, but observed a sudden jump in the β-errors
(up to 100%) as soon as d̃ got larger. This jump, e.g., occurred at d̃ = 2 for the
90%-quantile with γ = 0.5, N = 100, 200.

Again, we were also interested in the standard deviation of the critical values obtained
by the permutation method. Under the null hypothesis (Poisson process, N = 100,
γ = 1), we got a standard deviation of 0.28 for the 90%-quantile and of 0.96 for the
99%-quantile; for the partial sums the standard deviation was even smaller. As before,
we used 1, 000 repetitions of step 1 to 4 from the first simulation.

For our simulations we used again the software package R, Version 1.2.3. On a Celeron
with 466 MHz and 384 MB RAM the calculation of the permutation quantiles takes
approximately 10 seconds in the case of 100 observations, and 30 seconds in the case of
200 (using 10, 000 permutations).
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