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Abstract
In this paper we develop testing procedures for the detection of structural

changes in nonlinear autoregressive processes. For the detection procedure we
model the regression function by a single layer feedforward neural network. We
show that CUSUM-type tests based on cumulative sums of estimated residuals,
that have been intensively studied for linear regression, can be extended to this
case. The limit distribution under the null hypothesis is obtained, which is needed
to construct asymptotic tests. For a large class of alternatives it is shown that the
tests have asymptotic power one. In this case, we obtain a consistent change-point
estimator which is related to the test statistics.
Power and size are further investigated in a small simulation study with a partic-
ular emphasis on situations where the model is misspecified, i.e. the data is not
generated by a neural network but some other regression function. As illustration,
an application on the Nile data set as well as S&P log-returns is given.
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1 Introduction

The question of structural stability of models is very important in diverse areas of science
such as economy, finance, hydrology, physics or quality control. In statistics the field of
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1 Introduction

change-point analysis has a long tradition dating back to Page [42, 43], who introduced
it in the context of quality control. It deals with the question whether the stochastic
structure of an observed time series has changed at some unknown point in the sample.
For a detailed overview of the field of change-point analysis we refer to the book by
Csörgő and Horváth [12].

During the past decades change-point problems have been attracting more and more
interest and have been investigated in different ways. A classical scenario is a possible
mean change in otherwise independent identically distributed random variables. Later
on, this was extended to stability tests of the parameters of a regression function. Most
of these tests are based on the variational or dynamical behavior of the partial sum
process Ŝn(k) of the estimated residuals frequently by considering weighted maxima of
the partial sum process. In this context, CUSUM based tests introduced by Brown
et al. [8] are of particular importance. For a change in the mean and a change in
the parameter of a linear model CUSUM-based tests have been investigated to a great
extend (confer Csörgő and Horváth [12] and some of the references therein). These
tests have then been extended to linear autoregressive time series by several authors.
For example, Kulperger [34] as well as Horváth [21] use test statistics based on partial
sums of residuals for linear autoregressive time series. Similary, Bai [4] makes use of
partial sums of residuals for the change analysis in ARMA-models. Such tests based
on estimated residuals have the advantage of being easily calculable and having a good
power for those alternatives they can detect. On the other hand, they usually only
detect changes of the unconditional mean. Davis et al. [13] obtain a Gaussian-type
likelihood ratio statistic which asymptotically detects all parameter changes. However,
least-squares estimators need to be calculated for each possible change-point. Hušková
et al. [25] propose a related approach using weighted sums of residuals, which overcomes
this difficulty.

For the nonlinear setting most of the change-point literature deals with jumps in the
regression function using a Kernel based approach and not with distributional changes
over time (confer Müller [39] or Delgado and Hidalgo [14]). Little is done for nonlinear
time series models, an exception is found in Andrews [3], where Wald, Lagrange Multi-
plier and Likelihood ratio tests based on generalized method of moments are designed for
testing parameter stability and structural changes. As for linear autoregressive models
these tests require the calculation of estimators for any possible change-point.

In this paper we consider nonlinear autoregressive time series, which have recently been
attracting some attention in the time series literature (confer e.g. the textbook by
Tong [51] and references therein). White [52] as well as Teräsvirta et al. [50] compare
the forecasting performance of a linear model with those of nonlinear models including
models where the regression function is given by neural networks. Several other au-
thors including Francq et al. [17] and Luukkonen et al. [35] propose statistical tests to
distinguish between linear and non-linear autoregressive time series.

In this paper we develop change-point tests for nonlinear time series based on estimated
residuals, where we approximate the nonlinear regression function by a neural network
to estimate these residuals. The asymptotic theory is then derived for general nonlinear
regression functions. Due to its universal approximation property (confer e.g. White [53]

2



1 Introduction

or Franke et al. [18]) a large class of functions can be approximated by a neural network
to any degree of accuracy. Therefore, this setup is very general and able to model
many real-life time series while – at the same time – being mathematical feasible and
computationally easier to handle due to its parametric nature. This is also confirmed by
our small simulation study where a special emphasis is given to autoregressive time series
where the regression function is not a neural network (cf. Section 4). Approximations
via different parametric models than neural networks can be derived in a similar manner
under appropriate assumptions on the parametric regression function.

We consider the nonlinear autoregressive time series

Xt = g(Xt−1) + εt, (1.1)

where Xt−1 = (Xt−1, . . . , Xt−p) and {εt : 1 6 t 6 n} are independent identically dis-
tributed random errors having a positive variance and satisfying further conditions spec-
ified below.

The model defined in equation (1.1) covers a wide class of processes including the single
layer feedforward neural network based autoregression as in (1.4) below, the classical lin-
ear autoregressive (AR) processes as well as the threshold autoregressive (TAR) models
due to Tong [51]. The existence of strictly stationary solutions of equation (1.1) as well
as their geometric ergodic property can be derived using the stability theory for Markov
chain, see e.g. Meyn and Tweedie [37] or Tong [51]. An and Huang [1] give further
conditions that can easily be checked and are applicable to a large range of processes
including the ones mentioned above. Further, the independence assumption of the resid-
uals to the past observations of the process considered in An and Huang [1] appears to
be standard in the literature and induces the causality of the strict stationary solution
of equation (1.1).

In view of possible financial applications, an indirect example of model (1.1) is given by
the nonlinear ARCH processes, see for example Stockis et al. [48], an extension of the β-
ARCH model introduced by Guégan and Diebolt [20] which include the celebrated ARCH
model defined by Engle [16]. Applying the logarithm to the squared nonlinear ARCH
time series transforms it into a model following (1.1). Back to the change point problem,
Berkes et al. [22, 5, 6, 7] developed several tests for both a change in a parameter of the
GARCH process as well as changes in the residual distribution or correlation structure
for the important example of ARCH and GARCH-processes.

As mentioned above, we will develop change-point tests based on estimated residuals,
which we obtain by approximating the nonparametric function g by a one layer feedfor-
ward neural network with H hidden neurons

f(x, θ) = ν0 +
H∑
h=1

νhψ(< αh,x > +βh), (1.2)

where <,> is the classical scalar product on Rp and αj = (αj1, . . . , αjp). In this paper
we assume that ψ is twice continuously differentiable with bounded first and second
derivatives and belongs to the class of sigmoid activation functions that satisfy

lim
x→−∞

ψ(x) = 0, lim
x→∞

ψ(x) = 1, ψ(x) + ψ(−x) = 1. (1.3)
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A popular choice is the logistic function

ψ(x) = (1 + e−x)−1.

Denote θ = (ν0, . . . , νH ,α1, . . . ,αH , β1, . . . , βH). As a special case of (1.1) we obtain an
autoregressive time series model with a neural network as regression function

Xt = f (Xt−1, θ0) + εt (1.4)

for some θ0. We will use this as an approximation to the true model (1.1) to obtain
estimated residuals. This is a reasonable approach due to the universal approximation
property of neural networks (White [53] or Franke et al. [18]). Time series following this
model will be called correctly specified, otherwise we will call them misspecified.

Stockis et al. [48] use the time series in (1.4) as building blocks in a regime-switching
model, the so called CHARME-models, in the context of financial time series. In their
model the duration time in each regime is random and driven by a hidden Markov
chain, while in classical change-point analysis the duration time is usually fixed and
deterministic. For CHARME-models they use the theory of stability of Markov chains
as developped in Meyn and Tweedie [37] or Tong [51] to prove the existence of a unique
strictly stationary and causal solution of the CHARME-model. Since Model (1.4) is a
special case with only one regime, the following result is a straightforward application
of Theorem 4 of Stockis et al. [48].

Theorem 1.1. Let εt have a density function that is positive on the real line and θ0

belong to a compact set. Then, Xt has a unique strictly stationary and causal solution,
which is geometrically ergodic. Furthermore, if there exists m > 0 such that E|εt|m <∞,
then, E|Xt|m <∞.

Based on this model we can derive a least-squares estimator θ̂n of the parameter θ0 and
consequently can estimate the residuals by ε̂t = Xt−f(Xt−1, θ̂n). Under misspecification
this leads to an approximation of the true regression function by a neural network.
Precisely we minimize the nonlinear least squares (NLLS) with respect to θ

Qn(θ) :=
n∑

t=p+1

(Xt − f(Xt−1, θ) )2 =:
n∑

t=p+1

qt(θ),

thus we consider the nonlinear least squares estimator

θ̂n = arg min
θ∈K

Qn(θ) (1.5)

for a suitable compact set K. The minimization is usually obtained by solving the
nonlinear score function

∂Qn(θ̂n)

∂θ
= 0,
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which yields

n∑
t=p+1

ε̂t = 0. (1.6)

Since we do not assume that {Xt} is a neural-networked based autoregressive time series
as in (1.4), the question arises how this estimator behaves under misspecification (1.1).
This is investigated in detail in Section 2.

Description of the test procedure

Let us now consider a time series model with a change after an unknown time point
1 6 k∗ = k∗(n) 6 n

Xt =

{
X

(1)
t , t 6 k∗

X
(2)
t , t > k∗,

(1.7)

where {X(1)
t } as well as {X(2)

t } are time series that differ distributionally. While this is

not needed to obtain the below theoretic results, we have in mind that {X(1)
t } as well

as {X(2)
t } are both of the form (1.1) but with different regressions functions. In the

correctly specified model both follow (1.4) but with different parameters. The unknown
parameter k∗ is called the change-point if k∗ < n. For k∗ = n no change occurs.

We are now interested in the testing problem

H0 : k∗ = n vs. H1 : k∗ < n.

Our testing procedures are based on various functionals of the partial sums of estimated
residuals using the least-squares estimator θ̂n as in (1.5)

Ŝn(k) =
k∑

t=p+1

ε̂t =
k∑

t=p+1

(
Xt − f(Xt−1, θ̂n)

)
.

In order to investigate the behavior of statistics based on Ŝn(k), we need to understand

how the estimator θ̂n behaves in case of the misspecified model (1.1) as well as under
the alternative (1.7) with k∗ < n, which is also considered in Section 2.

The minimization procedure takes place with respect to some suitable compact set K. If
θ̂n is not in the interior of this compact set, we will reject the null hypothesis immediately
since either a change occurred or model (1.4) is not capable of describing the observed
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time series sufficiently well. Otherwise one of the following test statistics is used:

Tn1 = max
p<k<n

(√
n− p

k(n− p− k)
|Ŝn(k)|

)
,

Tn2(q) = max
p<k<n

(
1

√
n− p q( k

n−p)
|Ŝn(k)|

)
,

Tn3(G) = max
p+G<k6n

1√
G

∣∣∣Ŝn(k)− Ŝn(k −G)
∣∣∣ ,

T̃n3(G) = max
p+G<k6n−p−G

1√
2G

∣∣∣Ŝn(k +G)− 2Ŝn(k) + Ŝn(k −G)
∣∣∣ ,

Tn4(r) =
1

n− p

n−1∑
k=p+1

1

r(k/(n− p))

(
1√
n− p

Ŝn(k)

)2

, (1.8)

where q(·) and r(·) are weight functions defined on (0, 1) specified below and G < n.

Theorem 3.1 gives the null asymptotics for the above statistics, from which we can derive
an asymptotic size α test. Theorem 3.2 gives some assumptions under which these tests
have asymptotic power one in the correct as well as misspecified model. In this situation
Corollary 3.1 shows how to obtain a consistent estimator for the change-point.

In some applications data is observed sequentially and a decision whether a change has
occurred or not has to be made online. An example are financial time series such a stock
returns where adjustments of investment strategies should be made if a change occurred.
The procedures discussed in this paper can also be extended to this situation, for details
we refer to Kirch and Tadjuidje-Kamgaing [29].

The remainder of the paper is organized as follow: Statistical properties of the above
NLLS-estimator under the null hypothesis as well as alternatives, the correctly specified
as well as misspecified models are discussed in the next section.
Section 3 contains the asymptotic distribution of the proposed test statistics under the
null hypothesis as well as some consistency results under alternatives. Results are derived
taking possibly misspecified models into account. In addition, a consistent change-point
estimator is obtained.
Section 4 illustrates the usefulness of the proposed procedures with a simulation study
as well as an application to the Nile data set as well as S&P data.
The final sections contain the proofs.

2 Some Properties of Neural Network Estimators

In order to obtain asymptotics for the change-point statistics, we need to understand
the behavior of θ̂n under the null as well as alternative hypothesis, for the correctly as
well as misspecified model. For the case of a correctly specified null hypothesis, there
is an abundant literature on this topic. Since we present a different proof the moment
assumptions required in this case are weaker than for the classical proofs. Using a
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uniform law of large numbers for random variables defined on a separable Banach space
(cf. Ranga Rao [46]), we need only the second derivative of the cost function, instead
of the third as usual for the nonlinear parametric models (see e.g. Theorem 3.2.24
in Taniguchi and Kakizawa [49]). Furthermore, we obtain asymptotic results such as

consistency and asymptotic normality with respect to some well-defined parameter θ̃0

for the misspecified model (1.1) as well as in case a change-point is present.

To this end assume

A. 1. Let {X(1)
t : t ∈ Z}, {X(2)

t : t ∈ Z} be stationary and ergodic processes and

E|X(1)
1 |ν <∞ and E|X(2)

1 |ν <∞ for some ν > 2.

Under the alternative this is a simplifying assumption to avoid additional technical
difficulties. Frequently, we have the following model in mind

Xt =

{
g(Xt−1) + εt, t 6 k∗,

h(Xt−1) + εt, t > k∗.
(2.1)

In this case the time series after the change-point has starting values from the stationary
distribution of the time series before the change-point and is therefore not stationary.
The consistency as in Theorem 2.1 remains true in this situation if the uniform law
of large numbers holds for the time series after the change. Some results to this end
concerned with the law of large numbers as well as central limit theorem can for example
be found in Meyn and Tweedie [37], Chapter 17, as well as Jensen and Rahbek [27].
The asymptotic normality of Theorem 2.2 is only needed under the null hypothesis for
the purpose of this paper but also remains true for model (2.1) under some additional
assumptions. In the simpler situation of a linear autoregressive model Hušková et al. [25]

derive an explicit formula for the difference of a time series with starting value X(1)
t−1 and

starting values from the corresponding stationary distribution. Their results show that
for linear time series the starting values are irrelevant in all of the above cases.

Furthermore, we assume:

A. 2. The change-point fulfills k∗ = bλnc for some 0 < λ 6 1.

Here, λ = 1 corresponds to the null hypothesis while 0 < λ < 1 corresponds to the
alternative hypothesis.

Let

Eθ = λE(X
(1)
t − f(X(1)

t−1, θ))
2 + (1− λ)E(X

(2)
t − f(X(2)

t−1, θ))
2, (2.2)

If no change occurs the expressions simplifies to Eθ = E(Xt − f(Xt−1, θ))
2.

Define

θ̃0 = arg min
θ
Eθ (2.3)

and assume

7



2 Some Properties of Neural Network Estimators

A. 3. θ̃0 is the unique minimizer of Eθ and lies in the interior of the compact parameter
set K ⊂ RH(p+2)+1.

The existence of θ̃0 is needed only to obtain the asymptotic distribution of the test
statistic under the null hypothesis (compare Theorem 3.1). Under alternatives it is not
entirely necessary but simplifies the conditions on what kind of changes are detectable
(confer Theorem 3.2).

If the parameter space is chosen in such a way that the network is identifiable, then the
true parameter θ0 in the correctly specified model without change (1.4) is the unique

minimizer of Eθ = E(f(Xt−1, θ0)− f(Xt−1, θ))
2, which shows that θ̃0 = θ0.

In order to get a better understanding of identifiability in neural networks, we state the
following result of Hwang and Ding [26].

Lemma 2.1. Assume that

(i) f(x, θ̃0) is not redundant (i.e. there exists no other networks with fewer hidden
neurons (H ′ < H) that represent exactly the same relationship function).

(ii) f(x, θ̃0) is irreducible, i.e., for all i 6= 0, j 6= 0,

a) νi 6= 0

b) αi 6= 0

c) (αi, βi) 6= (αj, βj) for all i 6= j.

If the activation function satisfies (1.3), then up to a family of permutations and trans-

formations defined below, f(x, θ̃0) is identifiable unique.

To understand the transformation leading to non-identifiability, redefine θ = (ν0, µ1, · · · , µH)
with µh = (νh, βh, αh), h = 1, · · · , H, then

1. a permutation of µi = (νi, βi, αi) and µj = (νj, βj, αj) still provide the same neural
networks function, i.e. a permutation of the i-th neuron and j-th neuron will not
change the value of the neural networks function.

2. Additionally, by using the relation in equation (1.3) one derives

νiψ(< αi, x > +βi) = νi(1− ψ(< −αi, x > −βi)).

Henceforth, we can easily verify that (ν0, µ1, · · · , µi−1, µi, µi+1, · · · , µH) and (ν0 +
νi, µ1, · · · , µi−1,−µi, µi+1, · · · , µH) yield the same neural network function.

In practice these transformations do not yield a problem, as in each segment of the
parameter space θ̃0 is identifiably unique so that it is still guaranteed that f(x, θ̂n) is

close to f(x, θ̃0), which is all that matters for the below change-point test.

Theorem 2.1. Let A.1 – A.3 hold. Then θ̂n is strongly consistent for θ̃0, i.e.

θ̂n → θ̃0 a.s. (n→∞).
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2 Some Properties of Neural Network Estimators

Remark 2.1. In the correctly specified model without change (1.4) the result of The-
orem 2.1 can be obtained under the weaker assumption of the existence of only first
moments of the innovations by noting that θ̂n is the minimizer of Qn(θ) =

∑n
t=p+1 q̃t(θ)

with qt(θ) = (f(Xt−1, θ) − f(Xt−1, θ0))2 + 2εt(f(Xt−1, θ) − f(Xt−1, θ0)). The proof is
analogous to the one of Theorem 2.1 with the difference that a uniform law of large
number is obtained for Qn under the existence of only first moments of the innovations.

In order to derive asymptotic normality we need some additional assumptions. Recall
that a stationary process {Tt} is called α- or strong mixing with mixing rate α(·) if

α(j) = sup
A∈F0

−∞(T ), B∈F∞j (T )

|P (A ∩B)− P (A)P (B)| → 0 as j →∞,

where F0
−∞(T ) is the σ-algebra generated by T0, T−1, · · · and F∞j (T ) is the σ-algebra

generated by Tj, Tj+1, · · · .

A. 4. The time series {X(1)
t } and {X(2)

t } are independent and α-mixing with α(j) =

O(j−c) for some c > ν/(2− ν), where ν > 2 is such that and E|X(l)
0 |ν <∞, l = 1, 2.

The mixing assumption is a classical condition in nonlinear time series analysis and
follows from stationarity and geometric ergodicity, which can be derived with little effort
using the stability theory for Markov processes, see e.g. Meyn and Tweedie [37]. For
the correctly specified model 1.4 this follows from a result of Stockis et al. [48] as pointed
out in Theorem 1.1. Recently, different dependency concepts have been introduced to
tackle some of the deficiencies of mixing conditions (cf. e.g. Doukhan and Louhichi [15]
for the weak dependence approach). Our results remain true if these conditions ensure

certain assumptions. For example, to obtain the next theorem we need that 1√
n
∇Qn(θ̃0)

fulfills a central limit theorem, for the results in the next section that it fulfills the law of
iterated logarithm in addition to a strong invariance principle for ζt = Xt − f(Xt−1, θ̃0).
The advantage of using mixing conditions is twofold. First, for Xt mixing, processes of
the form g(Xt) for some measurable g are also strong mixing with the same rate (cf. the
proof of Theorem 2.2). Secondly, all the results we need are available in the literature
for mixing processes and follow for example from the invariance principle of Kuelbs and
Philipp [33].

The independence assumption is a technical condition that is not fulfilled for processes as
in (2.1). However, asymptotic independence of the two processes in the sense that (5.1)
remains true is sufficient to obtain the result but difficult to prove in the general setting
(2.1). For linear autoregressive time series, this follows from an explicit representation of
the series with respect to the starting values as has been derived in Hušková et al. [25].
Since we only need asymptotic normality of the estimator under the null hypothesis to
derive the asymptotic distribution of the change-point statistics, deriving asymptotic
normality under alternatives is only of marginal interest in this paper.

A. 5.

A = ∇2Eθ̃0

is positive definite, where ∇2 denotes the Hesse matrix with respect to θ.
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3 Consistency of the Change-Point Tests

Finally, we can state asymptotic normality of the estimators.

Theorem 2.2. Let A.1 – A.5 hold. Then

√
n(θ̂n − θ̃0)

L→ N (0, A−1V A−1),

where

V = lim
n→∞

1

n
E∇Qn(θ̃0)(∇Qn(θ̃0))T

with ∇Qn(θ) = ∂Qn(θ)
∂θ

is the gradient of Qn(θ). The limit V exists but may be singular.

3 Consistency of the Change-Point Tests

In this section we derive the null asymptotics for the test statistics introduced in (1.8).
Furthermore, we show that the corresponding tests have asymptotic power one for a
large class of important alternatives. In this case, we obtain a consistent estimator for
the change-point which is related to the test statistics.

First, we need to introduce some additional notation. We assume that the weight func-
tion q belongs to the class

Q0,1 = {q : q is non-decreasing in a neighborhood of zero, non-increasing in a

neighborhood of one and inf
η6t61−η

q(t) > 0 for all 0 < η < 1/2}.

We need additionally that the following integral is finite for at least some c > 0

I∗(q, c) =

∫ 1

0

1

t(1− t)
exp

{
−cq2(t)

t(1− t)

}
dt.

A very important class of weight functions fulfilling these conditions are

q(t) = (t(1− t))γ, 0 6 γ < 1/2,

where a γ close to 1/2 rather detects early or late changes and a γ close to 0 detects
changes in the middle. Note that for γ = 1/2 we obtain statistic Tn1 (which is asymp-
totically independent from the statistics with γ < 1/2).

For details and further references confer Csörgő and Horváth [11], Chapter 4.
We assume that the weight function r fulfills for all x ∈ (0, 1)

r(x) > 0 and

∫ 1

0

t(1− t)
r(t)

dt <∞. (3.1)

For more details and further references confer Csörgő and Horváth [12], Chapter 2.
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3 Consistency of the Change-Point Tests

Moreover define

α(x) =
√

2 log x, β(x) = 2 log x+
1

2
log log x− 1

2
log π. (3.2)

The key to the next theorem is a strong invariance principle for ζt = Xt − f(Xt−1, θ̃0),
i.e. there exists a Wiener process {W (t)} (possibly after enlarging the probability space)
and 0 < κ < 1/2, τ > 0 such that

k∑
i=1

(ζi − Eζ1)− τW (k) = O
(
k1/2−κ) a.s. (3.3)

In case of a correctly specified model (1.4) we get ζt = εt is an i.i.d. sequence, which
fulfills the above invariance principle with τ 2 = var(ε1), κ = (ν − 2)/(2ν). This is a
classical result by Komlós et al. [31, 32] and Major [36], which has subsequently been
generalized to dependent random variables. For example, Kuelbs and Philipp [33] prove
such a limit theorem for strong mixing sequences fulfilling A.4.

The use of mixing conditions has the advantage that the properties immediately carry
over to functionals of the time series such as Yt = ∇f(Xt, θ̃0). In principle, the mixing
conditions can be relaxed to obtain the below theorem, if the invariance principle (3.3)
holds in addition to assumptions on certain functionals of the time series such as {Yt}.
For example, Wu [54] proves the above invariance principle for certain processes of the
type Xt = g(εt, εt−1, . . .), but the results for relevant functionals needed to be derived
additionally.

For the statistics Tn2(q) and Tn4(r) it is sufficient but more technical if only a functional
central limit theorem in addition to some Hájek-Rényi-type inequalities (for q, r 6= 1)
holds (for some technical details we refer to Kirch [28], proof of Corollary 6.1).

We are now ready to state the asymptotic distribution under H0 for the above statistics.

Theorem 3.1. Let the null hypothesis of no change hold, i.e. λ = 1. Furthermore
assume A.1 – A.5.

a) Then we have for all x ∈ R

P

(
α(log(n− p))Tn1

τ
− β(log(n− p)) 6 x

)
−→ exp(−2e−x) as n→∞.

b) If q ∈ Q0,1 and I∗(q, c) <∞ for some c > 0, then

1

τ
Tn2(q)

D−→ sup
0<t<1

|B(t)|
q(t)

as n→∞.

c) If G = G(n) → ∞, G
n
→ 0 and G−1n1−2κ log n → 0 as n → ∞, κ as in (3.3), then

we have for all x ∈ R

P

(
α((n− p)/G)

Tn3(G)

τ
− β((n− p)/G) 6 x

)
−→ exp(−2e−x) as n→∞.
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3 Consistency of the Change-Point Tests

d) If G = G(n) → ∞, G
n
→ 0 and G−1n1−2κ log n → 0 as n → ∞, κ as in (3.3), then

we have for all x ∈ R

P

(
α((n− p)/G)

T̃n3(G)

τ
− β((n− p)/G) + log(2/3) 6 x

)
−→ exp(−2e−x) as n→∞.

e) If r fulfills condition (3.1), then

1

τ 2
Tn4(r)

D−→
∫ 1

0

B2(t)

r(t)
dt as n→∞.

Here {B(t) : 0 6 t 6 1} denotes a Brownian bridge. The assertions remain true if
instead of the true long-run standard deviation τ > 0 an estimator τ̂n is used as long
as for b) and e) τ̂ − τ = oP (1), for a) τ̂ − τ = oP ((log log n)−1)) and for c) and d)
τ̂ − τ = oP ((log n/G)−1)).

The following lemma gives a variance estimator as is needed for the change-point tests
above in case of a correctly specified model. It can still be reasonably used in applications
if the approximation is good (cf. Remark 3.1).

Lemma 3.1. Under A.1 – A.5 it holds for the correctly specified model (1.4) under the
null hypothesis

σ̂2 =
1

n− (H(p+ 2) + 1)

n∑
j=p+1

ε̂2
j = σ2 + op

(
n−(ν−2)/ν

)
,

if 2 6 ν < 4 in A.1. If ν > 4, then we get the stronger rate OP (n−1/2).

Remark 3.1. In practical applications it is advisable to use the following adapted vari-
ance estimator, which – under appropriate assumptions – is also a consistent estimator
under alternatives in the fully correctly specified situation, where {X(2)

t } follows (1.4)
with a different parameter but an innovation-sequence with the same variance as before
the change-point:

σ̂2
a,n =

k̂∗

n

1

k̂∗ − (H(p+ 2) + 1)

k̂∗∑
t=p+1

ε̂2
t

+

(
1− k̂∗

n

)
1

n− k̂∗ − (H(p+ 2) + 1)

n∑
t=k̂∗+1

ε̂2
t (3.4)

where k̂∗ is as in Corollary 3.1

ε̂t =

{
Xt − f(Xt−1, θ̂1), t 6 k̂∗,

Xt − f(Xt−1, θ̂2), t > k̂∗,

θ̂1 = arg min
θ

k̂∗∑
t=p+1

(Xt − f(Xt−1, θ) )2 , θ̂2 = arg min
θ

n∑
t=k̂∗+1

(Xt − f(Xt−1, θ) )2 .

12



3 Consistency of the Change-Point Tests

Theorem 3.1 suggests to use an estimator for the long-run variance τ 2 instead of σ2 in
order to obtain asymptotically the correct size even under misspecification. To this end
we propose to use a flattop-kernel estimator taking possible changes into account with
the automatic bandwidth selection procedure by Politis [44]

τ̂ 2 = τ̂ 2(Λn) = max

(
R̂(0) + 2

Λn∑
k=1

w(k/Λn)R̂(k),
1

n
σ̂2
a,n

)
, (3.5)

where for a > b we define
∑b

a = 0, R̂(k) = 1
n

∑n−k
t=1 ε̂(t)ε̂(t+ k) and

w(t) =


1, |t| 6 1/2,

2(1− |t|), 1/2 < t < 1,

0, t > 1.

The maximum on the right-hand side of the formula is needed to guarantee that the
estimator is positive but remains scale invariant. In simulations we use the following
automatic bandwidth selection procedure proposed by Politis [44]:

Automatic bandwidth selection procedure: Let λ̂ be the smallest positive integer

such that
∣∣∣R̂(λ̂+ k)/R̂(0)

∣∣∣ < 1.4
√

log10 n/n, for k = 1, . . . , 3. Then choose the band-

width Λ̂n = 2λ̂.
Hušková and Kirch [23] discuss the equivalent of this estimator in case of mean changes
in dependent data.

The problem is that the long-run variance τ 2 is much more difficult to estimate than σ2 so
that we do not obtain such good estimates for small sample sizes (cf. e.g. the simulation
study in Hušková and Kirch [23]). On the other hand if the approximation of Xt by

a neural network based autoregressive process with parameter θ̃0 is good enough, the
two variances are almost equal, but the variance estimator (3.4) is much more accurate
than the long-run variance estimator (3.5). If – for small and medium samples sizes –
the estimation error of (3.5) is larger than the approximation error involved when using
(3.4), then the latter one yields the better results. This is confirmed by the simulation
study in Section 4, where change-point tests based on the variance instead of long-run
variance estimator lead to a better performance if measure by empirical size and power.

Theorem 3.1 enables us to construct tests based on the above statistics with the correct
asymptotic size. In the next theorem it is shown that those tests have asymptotic power
one under a large class of alternatives.

Before we can state the theorem we first need to give some additional assumptions.

A. 6. (a) There exists c > 0 such that

P
(

max[|EX(1)
1 − Ef(X(1)

p , θ)|θ=θ̂n| , |EX
(2)
1 − Ef(X(2)

p , θ)|θ=θ̂n|]) > c
)
→ 1.

(b) There exists c > 0 such that

P
(∣∣∣(EX(1)

1 − Ef(X(1)
p , θ)|θ=θ̂n)− (EX(2)

1 − Ef(X(2)
p , θ)|θ=θ̂n)

∣∣∣ > c
)
→ 1.

13



3 Consistency of the Change-Point Tests

Remark 3.2. If the assumptions of Theorem 2.1 hold, Assumption A.6 a) simplifies to

|Ef(X(1)
p , θ̃0)− EX(1)

1 | > 0.

In this situation by the definition of θ̃0 and A.3

|Ef(X(1)
p , θ̃0)− EX(1)

1 | =
1− λ
λ
|EX(2)

1 − Ef(X(2)
p , θ)|.

If θ̃0 does not exist under alternatives, the behavior of θ̂n is arbitrary, but a) is still
fulfilled if

min
θ∈K

(max(|Ef(X(1)
p , θ)− EX(1)

1 | , |EX
(2)
1 − Ef(X(2)

p , θ)|)) > 0. (3.6)

Analogous expressions can be obtained for b). Equation (3.6) essentially means that

there exists no neural network f(x, θ) with H hidden neurons for which Ef(X(1)
p , θ) =

EX(1)
1 as well as Ef(X(2)

1 , θ) = EX(2)
1 . In the simple mean-change-model without neural

networks (i.e. trivial neural networks where H = 0) both assumptions reduce to EX(1)
1 6=

EX(2)
1 .

Assumptions like these are typical for change-point statistics that are based on estimated
residuals and even occur in a simple linear regression situation, where tests based on
estimated residuals only detect changes if the unconditional expectation changes (cf. e.g.
Hušková and Koubkova [24]). Tests, which can detect general alternatives in the cor-
rectly specified model, can usually be obtained by using partial sums of vector-weighted
estimated residuals, yet they are theoretically and computationally much more compli-
cated. In a nonlinear parametric setting such as in (1.4) tests with power against all type
of changes in the typically high-dimensional parameter space will by construction be less
powerful than tests looking for specific important alternatives. The approach discussed
in this paper only detects a restricted class of important alternatives but does so very
successfully as the simulation study in Section 4 shows. Additionally, it is computation-
ally and theoretically easier accessible than tests based on high-dimensional weighted
sums of residuals.

In Kirch and Tadjuidje-Kamgaing [30] we show that the tests have asymptotic power one
even under certain local alternatives. The key tool is a uniform central limit theorem,
which replaces the uniform law of large numbers (Theorem 5.1) in the below proof.

Theorem 3.2. Assume that A.1 holds, where it is sufficient if the moment assumptions
holds for ν = 1, and the minimization takes place in a compact set K. Furthermore, the
change-point fulfills Assumption A.2 with 0 < λ < 1.

a) Let Assumption A.6 (a) hold.

(i) For all c ∈ R we get

P (α(log(n− p))Tn1 − β(log(n− p)) > c)→ 1.

14



4 Simulation Study and Real Data Applications

(ii) If q ∈ Q0,1, then

Tn2(q)
P−→∞,

which means that P (Tn2(q) > c)→ 1 for all c > 0.

(iii) If G = G(n)→∞, logn
G
→ 0 but G/n→ 0, then we have for all c ∈ R

P (α((n− p)/G)Tn3(G)− β((n− p)/G) > c)→ 1.

(iv) If r fulfills condition (3.1), then

Tn4(r)
P−→∞.

b) Let Assumption A.6 (b) hold. If G = G(n) → ∞, logn
G
→ 0 but G/n → 0, then we

have for all c ∈ R

P
(
α((n− p)/G)T̃n3(G)− β((n− p)/G) + log(2/3) > c

)
→ 1.

We obtain asymptotic power one in case of an unknown variance, if the variance esti-
mator is at least stochastically bounded under the alternative.

Based on the partial sum process {Ŝn(k)} we additionally obtain a consistent estimator
for the change-point as the following corollary shows.

Corollary 3.1. Let Assumptions A.1 (ν > 1 is sufficient), A.2 with 0 < λ < 1 as well
as A.3 and A.6 (a) hold. Then

k̂∗

n

P−→ λ,

where

k̂∗ = arg max
{∣∣∣Ŝn(k)

∣∣∣ : 1 6 k < n
}
. (3.7)

4 Simulation Study and Real Data Applications

In the previous sections we have shown that the derived tests have asymptotic level α
and power one for a large class of alternatives.

In Section 4.1, we consider the behavior of the statistic if the data really is an autore-
gressive process generated by a neural network. As in reality this will generally not
be fulfilled, the most pressing question is what happens under misspecification, which
will be considered in Section 4.2. In this context the question arises how sensitive the
procedure is with respect to the choice of the number of hidden neurons which is also
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4 Simulation Study and Real Data Applications

considered there. Finally in Section 4.4, we would like to have a more detailed look at
what kind of alternatives can be detected (cf. also Remark 3.2).

For illustrational purposes the methods will then be applied to two data sets which have
been used frequently in the context of change-point detection, namely the Nile data set
as well as S&P-returns in Section 4.5.

Because of limitations of space we restrict the simulations to the statistic Tn := Tn2(q)
with q ≡ 1, changes at k∗ = n/2 and an autoregression of order 1. For the implemen-

tation of the test optimization algorithms to obtain the parameter θ̂n as in (1.5) (resp.
for θ̂1, θ̂2 as in Remark 3.1) are needed. To this end the mathlab algorithm fminsearch
is used and the data set only included in the simulations if the variable exitflag of fmin-
search indicates that the algorithm has converged. The idea behind this is that the test
would only be applied in situations were this is the case and the approximation by a
neural network based process is reasonable.

4.1 Behavior of the Statistic under Model Specification

For sake of illustration, we consider the following correctly specified model including a
change

Xt =

{
0.5 + (1 + exp(0.5(1 + β1Xt−1)))−1 + εt, t 6 n/2,

0.5− (1 + exp(0.5(1 + β2Xt−1)))−1 + εt, t > n/2,

where εt is i.i.d. standard Gaussian random variables.The estimation is carried out with
a neural network for which H = 1.

As illustration, Figure 4.1 shows one generated data set in addition to the corresponding

CUSUM-Plot showing 1/
√
σ̂2
a,n (n− p) |Ŝn(k)|Note that Tn = maxk 1/

√
n− p|Ŝn(k)|.

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

4

(a) Computer based data
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(b) CUSUM-statistics

Figure 4.1: Neural Network based data and CUSUM statistic

Similar to the numerical study in the coming sections, we consider the sample sizes
n = 250, 500 and base the empirical sizes and powers on 1000 replications (repeated
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4 Simulation Study and Real Data Applications

experiments). For β1 = 0.7 and β2 = −0.7 the size 0.048 (0.053, 0.042) for variance
estimators (3.4) ((3.5) and the true variance) are obtained for a length of n = 250
(respectively 0.046, 0.053, 0.046 for n = 500) and corresponding power is 0.999, (0.796,
0.999) for n = 250 (respectively 0.999, 0.997, 0.999 for n = 500).

More generally consider

Xt =

{
0.5 + (1 + exp(0.5(1 + 0.7Xt−1)))−1 + εt, t 6 n/2,

µ2 + α2 (1 + exp(0.5(1 + β2Xt−1)))−1 + εt, t > n/2.

For various values of (µ2, α2, β2) the empirical size and power of the test statistic are
summarized in Table 4.1. The results here are given for a sample size of n = 250
observations, EV stands for variance estimator (3.4), LV for (3.5) and KV for the true
variance of the errors.

(0.1, 1, 0.7) (0.5, -1, 0.7) (0.5,1,-0.7) (0.5, -1, -0.7)
size power power power power

H=1
EV 0.048 0.790 0.999 0.160 1
LV 0.053 0.697 0.7960 0.146 0.6810
KV 0.042 0.786 0.999 0.146 1

Table 4.1: Influence of the of the various parameters on the empirical size for a nominal
level of 5% for the correctly specified models, n = 250.

Conclusions:

Using the estimator for the variance (3.4) yields comparable in fact even slightly better
results than using the known variance which has been included as a benchmark value.
Furthermore, the results are better especially in terms of power than using the long-run
variance estimator. However, this is not surprising in the correctly specified model.

4.2 Behavior of the test statistics under misspecification

In this section we consider the more important misspecified situation, where the autore-
gression function is not truly given by a neural network but can only be approximated
by it. In the simulations we consider linear autoregression functions g(x) = a0 + a1x
corresponding to a true AR(1)-process, as well as nonlinear autoregression functions

g(x) =

{
a0 + a1x, x 6 c,

b0 + b1x, x > c,
(TAR).

corresponding to a true TAR(1)-process (threshold autoregressive).
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(a) AR 1: Sample Path
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(b) AR 1: CUSUM Plot
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(c) AR 2: Sample Path
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(d) AR 2: CUSUM Plot
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(e) TAR 1: Sample Path
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(f) TAR 1: CUSUM Plot
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(h) TAR 2: CUSUM Plot

Figure 4.2: Sample Path and CUSUM plot for this sample path, n = 250
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More precisely, we use standard normal errors and the following two AR as well as TAR
parameters:

• AR 1: g0(x) = 0.3x, g1(x) = 0.5 + 0.1x

• AR 2: g0(x) = 0.3x, g1(x) = 1− 0.1x

• TAR 1: g0(x) = 0.3x1{x>0} − 0.1x1{x<0}, g1(x) = (0.5 + 0.5x)1{x>0} − 0.3x1{x<0}

• TAR 2: g0(x) = 0.3x1{x>0}−0.1x1{x<0}, g1(x) = (1−0.1x)1{x>0}+(0.5+0.1x)1{x<0}

From the construction of the test statistic it is clear that the variance estimator plays
a crucial role for the performance of the test both under the null hypothesis as well as
under alternatives (cf. Remark 3.1). The empirical size and power (based on 1000 re-
peated experiments) for different scenarios are reported in Table 4.2. EV indicates that
the estimator σ̂2

a,n as given in 3.4 has been used, while for LV the long-run variance esti-
mator (3.5) has been used. The true long-run variance is not known in the misspecified
case so that it cannot be included here.

In Figure 4.2 one sample path for each four of the above misspecified scenarios is
given in addition to a plot of 1√

σ̂2
a,n (n−p)

|Ŝn(k)| for this sample path, note that Tn =

maxk 1/
√
n− p|Ŝn(k)|.

size power

AR 1
n = 250

EV 0.035 0.819
LV 0.041 0.751

n = 500
EV 0.044 0.996
LV 0.043 0.976

AR 2
n = 250

EV 0.035 1
LV 0.041 0.934

n = 500
EV 0.044 1
LV 0.043 0.948

TAR 1
n = 250

EV 0.035 0.933
LV 0.043 0.847

n = 500
EV 0.041 0.999
LV 0.043 0.981

TAR 2
n = 250

EV 0.037 0.956
LV 0.039 0.837

n = 500
EV 0.041 0.999
LV 0.043 0.932

Table 4.2: Empirical size and power for a nominal 5% level of the test for several sce-
narios.

Conclusions:

The test is conservative in all cases and has a good power even in the misspecified situa-
tions. Using the variance estimator (3.4) instead of the long-run variance estimator (3.5)

19



4 Simulation Study and Real Data Applications

results mainly in a smaller size but a larger power in our examples. These findings in-
dicate that the errors of the approximating neural network autoregressive process are
approximately independent so that the variance estimator (3.4) can be used and even
yields superior results. Therefore, in the following the results are only given for this
estimator.

4.3 Impact of Hidden Neurons:

Table 4.3 illustrates the influence of the number of hidden neurons on the power for the
misspecified AR 1, AR 2, TAR 1 and TAR 2 models defined above. It can be seen that
in all cases the power is good. For the AR 1 and AR 2 models the size is best for H = 2,
while for the TAR 1 and TAR 2 models H = 3 delivers best results.

AR 1 AR 2 TAR 1 TAR 2
size power size power size power size power

H=2 0.046 0.989 0.046 1 0.040 0.998 0.040 1
H=3 0.042 0.994 0.042 1 0.041 0.999 0.041 1
H=4 0.034 0.991 0.034 1 0.028 1 0.999 0.028 1
H=5 0.033 0.994 0.033 1 0.035 1 0.035 1
H=6 0.032 0.993 0.032 1 0.041 0.999 0.041 0.998
H=10 0.036 0.987 0.036 1 0.024 0.998 0.024 1

Table 4.3: Influence of number of hidden neurons on empirical size and power for a
nominal level of 5% for misspecified models, n = 500.

4.4 Power under Alternatives

Theorem 3.2 shows that certain alternatives are found with asymptotic power one. Re-
mark 3.2 suggests that changes going along with a mean change will be more easily
detectable, which is usually the case when statistics are based on estimated residuals.
Therefore, we will have a closer look at this in simulations. Again, we consider the
misspecified model, where the true process is generated by an AR(1)-process before the
change-point and by a different AR(1)-process after the change-point.

Here, we consider the following four scenarios:

• AR 3: g0(x) = 1 + 0.5x, g1(x) = 2

• AR 4: g0(x) = 1 + 2
3
x, g1(x) = 3

• AR 5: g0(x) = 0.3x, g1(x) = 0.9− 0.8x

• AR 6: g0(x) = 0.3x, g1(x) = 1.5− 0.5x

For H = 3, the simulation results are summarized in Table 4.4.
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AR 3 AR 4 AR 5 AR 6
size power size power size power size power

n=250 0.041 0.076 0.036 0.162 0.039 0.983 0.040 1
n=500 0.038 0.096 0.048 0.186 0.044 1.000 0.057 1

Table 4.4: Empirical size and power for a nominal level of 5% for misspecified models.

Note that EX(1)
1 = a0

1−a1 and EX(2)
1 = b0

1−b1 , where g0(x) = a0 + a1x and g1(x) = b0 + b1x.

This shows that in for AR 3 and 4 it holds EX(1)
1 = EX(2)

1 , for AR 5 |EX(1)
1 −EX

(2)
1 | = 0.5

and for AR 6 |EX(1)
1 −EX

(2)
1 | = 1, where {X(1)

t } and {X(2)
t } denote the time series before

and after the change respectively.

Conclusions:

As expected the power increases with increasing mean difference. However, in the cases
with no mean difference at all AR 1 and 2, we still get an unbiased test with a power that
is indeed significantly higher than the level (which is additionally given for comparison).
Interestingly, AR 4 has almost twice the power of model AR 3.

4.5 Real Data Applications

In this section we apply our testing procedure to two real data sets that have been
frequently used in change-point analysis (cf. e.g. Wu [55], Zhang et al. [56] or the R-
package strucchange). The first one is a hydrological data set namely the Nile river flow
recorded at Aswan (1871-1970), the second are the S&P-stock returns.

The Nile river data as well as a plot of 1√
σ2
a,n (n−p)

|Ŝk| are given in Figure 4.3
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(b) CUSUM-statistics

Figure 4.3: Nile river data and CUSUM statistic

The CUSUM plot shows that the null hypothesis of no change is clearly rejected and
the change-point is estimated to have occurred in 1898 (cf. Corollary 3.1). This is in
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accordance to previous analyses of this data set. In fact, it was the year when the first
Aswan dam was build.

An additional application of the test to the sub data sets before and after the estimated
change-point did not yield any evidence of a second change-point.

The second data set we consider are the daily S&P log-returns from January 1992 to
December 1999 (2022 observations) and July 1998 till June 2006 (2013 observations).
The raw data sets, that consists of the daily index closing values, were downloaded from
http://finance.yahoo.com/. S&P 500 is a world known stock index that is quoted at the
New York stock exchange.

Instead of the log-returns rt we apply the testing procedure to the log-transform of
the squared returns Xt = log r2

t . A popular model for squared returns is given by
the stochastic volatility model rt = σtYt, where recently Stǎricǎ and Granger [47] have
proposed that σt can be chosen piecewise constant while Yt follow some weak autore-
gressive model (even i.i.d. noise is not such a bad assumption). The transformation
log r2

t = log σ2
t + log Y 2

t brings the data rather close to our assumed model and trans-
forms changes in the volatility into mean changes which can be detected quite well by
our procedure as the simulation study has shown. However, in extreme cases where
the values of the returns are close to zero, the logarithm of the squared returns are too
small to fit reasonably into the framework. Therefore, we use a slight modification of
the log-transformation as introduced in Fuller [19], page 496.

X∗t = log(r2
t + ισ̂2

r)−
ισ̂2
r

r2
t + ισ̂2

r

(4.1)

where ι is a small real number (we choose ι = 0.02) and σ̂2
r is the sample variance of the

returns. Figures 4.4 and 4.5 illustrate the raw data for the two data sets, the log-returns
as well as their subsequent squared log-transformation.
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Figure 4.4: Daily S&P Values: January 1992- December 1999
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Figure 4.5: Daily S&P Values: July 1998- June 2006

The daily closing index values for both periods show the typical behavior of financial
time series often referred to as ’stylized facts’. For example the returns exhibit some
clustering and the squared returns consist of small positive values except for some local
picks (large values). On the log-scale, the dynamic of the squared returns become more
apparent.

Figure 4.6 shows the results of an application of our procedure to the log-transformed
squared returns
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(b) July 1998-June 2006

Figure 4.6: CUSUM Plots for S&P

The CUSUM plots show that the null hypothesis of no change are clearly rejected and
the change-points are estimated to have occurred around the time points 1246( 5th
December, 1996) for the first data and 1269 (23rd July, 2003) for the second data set.
Both data sets have been investigated by Zhang et al [56] in the context of discriminating
change points from long memory behavior. However, their procedures are based on the
squared returns rather than the log-transformed squared returns nevertheless they find
potential change-points close to our estimated change-points.
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5 Proofs of Section 2

When applying change-point tests to financial data sets one has to be careful as it is well
known that change-point tests reject in the presence of long-range dependence, while at
the same time time series with structural breaks yield long-memory effects (cf. Andreou
et al. [2] as well as Mikosch and Stǎricǎ [38].

5 Proofs of Section 2

We first state a uniform law of large numbers (ULLN) by Ranga Rao [46] for stationary
and ergodic processes defined on a separable Banach space. As an application we obtain
the uniform convergence of Qn(θ) and its derivatives, which enables us to obtain the
consistency of the NLLS estimator.

Theorem 5.1. Let ‖‖ be any norm on Rd and vt(θ) be a stationary ergodic random
sequence with values in C(K,Rd) satisfying

E sup
θ∈K
‖v1(θ)‖ <∞,

then

sup
θ∈K

∥∥∥∥∥ 1

n

n∑
t=1

vt(θ)− Ev1(θ)

∥∥∥∥∥ −→ 0 a.s. as n −→∞.

Proof. We refer to Theorem 6.5. in Ranga Rao [46].

This enables us to prove the following uniform convergence theorem.

Proposition 5.1. Let A.1 hold and K be compact.

a) Then it holds as n→∞

sup
θ∈K

∣∣∣∣ 1nQn(θ)− Eθ
∣∣∣∣→ 0 a.s.,

where Qn(θ) =
∑n

t=p+1 qt(θ) with qt(θ) as in (1.5), Eθ as in (2.2).

b) As n→∞

sup
θ∈K

∥∥∥∥ 1

n
∇2Qn(θ)−∇2Eθ

∥∥∥∥→ 0 a.s.,

where ∇2 denotes the Hesse matrix with respect to θ.

A similar result can be formulated for the first partial derivative. However, we skip its
presentation here as it is not needed for the proof of the main results in this paper.

Proof of Proposition 5.1. If Xt is stationary and ergodic (which is the case in the
correctly specified as well as misspecified model without change), then

qt(θ) and ∇2qt(θ)
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5 Proofs of Section 2

are (pointwise for each θ) stationary and ergodic processes defined on C(K,R) respec-
tively C(K,R(H(p+2)+1)×(H(p+2)+1)). Hence, preliminary conditions to make use of The-
orem 5.1 are fulfilled. In case of a change at point k∗ = bλnc, this is still true under

A.1 for qt,1(θ) = (X
(1)
t − f(X(1)

t−1, θ))
2 as well as qt,2(θ) = (X

(2)
t − f(X(2)

t−1, θ))
2 and an

analogous expression for b). Noting that the mixed term is asymptotically negligible, it
remains to show that E supθ q1(θ) < ∞ and in case of a change that E supθ qn(θ) < ∞
and corresponding expressions for b).

For a) this follows by supθ |f(x, θ)| 6 D1 for some D1 > 0 and Assumption A.1. An
application of Theorem 5.1 to {qt : t = 1, . . . , bλnc} as well as {qt : t = bλnc+ 1, . . . , n}
yields the assertion in case of a change-point at k∗ = bλnc.

For b) it follows by the existence of second moments of the time series before and
after the change because ‖∇2f(x, θ)‖ 6 D2 maxi=1,...,p x

2
i . This also shows that by the

dominated convergence theorem one can exchange taking derivatives and expectations,
showing that the expectation is indeed given by ∇2Eθ.

The above proposition now enables us to prove Theorem 2.1.

Proof of Theorem 2.1. The assertion follows from Lemma 3.1 in Pötscher and
Prucha [45] by Proposition 5.1 a) in addition to the identifiability uniqueness condition
A.3.

Proof of Theorem 2.2. If Xt is α-mixing, then (Xt,Xt−1) is α-mixing with the same
rate as

α(X1,X0)(k) 6 αX(k − p) for k − p > 0.

∇qt(θ) is a measurable function of (X
(l)
t ,X

(l)
t−1), l = 1, 2, by definition of f(x, θ), hence

by an application of A.4 is also α-mixing with the same rate as {X(l)
t }.

We first consider the case, where no change occurs: Since θ̃0 = arg minθ Eq1(θ) we get
by A.3 that

0 = ∇Eq1(θ̃0) = E∇q1(θ̃0),

where we can exchange the limits by the dominated convergence theorem because
supθ |∇f(x, θ)| 6 Dmax(|x1|, . . . , |xp|) for some D > 0, hence by the mean value the-
orem a integrable majorant exists. By the strong invariance principle of Kuelbs and
Philipp [33] for mixing sequences fulfilling A.4 the existence of V as well as the central
limit theorem

1√
n
∇Qn(θ̃0)

D−→ N(0, V ) (5.1)

holds - for a different proof of such a central limit theorem in the univariate case we
refer to Oodaira and Yoshihara [41].

In case of a change assertion (5.1) follows by considering the central limit theorems
before and after the change separately. By the independence of the process before and
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6 Proofs of Section 3

after the change the joint central limit theorem is obtained on noting that the joint
expectation is zero due to the definition of θ̃0 and the joint variance is the sum of the
variances due to the independence of the processes before and after the change.

By a Taylor expansion there exists θ∗n such that ‖θ∗n − θ̃0‖ 6 ‖θ̂n − θ̃0‖ with

0 = ∇Qn(θ̂n)

= ∇Qn(θ̃0) + (θ̂n − θ̃0)∇2Qn(θ∗n).

Hence,

∇Qn(θ0) = −(θ̂n − θ̃0)∇2Qn(θ∗n)

By Theorem 2.1 θ∗n
a.s.→ θ̃0. Since θ̃0 is an interior point of K we obtain that θ∗n is

(a.s.) an interior point of K for n large enough. Thus Proposition 5.1 together with the
Dominated Convergence Theorem implies as supθ |∇2f(x, θ)| 6 D3 max(x2

1, . . . , x
2
p)

1

n
∇2Qn(θ∗n)→ ∇2Eθ̃0 a.s.,

which is positive definite by Assumption A.5. This yields the assertion by (5.1).

6 Proofs of Section 3

To prove Theorem 3.1 the following lemma plays the crucial role. It allows to replace
the estimated errors by the centered errors, for which the assertions of Theorem 3.1 are
well-known.

Lemma 6.1. Let A.1 – A.5 hold and define ζt = Zt − f(Zt−1, θ̃0). Then it holds

a) max
p<k6n

√
n− p

k(n− p− k)

∣∣∣∣∣
k∑

t=p+1

(ε̂t − (ζt − ζ̄n−p))

∣∣∣∣∣ = OP

(√
log log n

n

)
,

b) max
p+G<k6n

1√
G

∣∣∣∣∣
k∑

t=k−G+1

(ε̂t − (ζt − ζ̄n−p))

∣∣∣∣∣ = OP

(√
log log n

G

)
,

where ζ̄n = 1/(n− p)
∑n

t=p+1 ζt. In the correctly specified model without change (1.4) it
holds ζt = εt.

Proof. By Theorem 2.1 it holds a.s. that θ̂n ∈ K for n large enough, which implies
(1.6). Hence,

k∑
t=p+1

(ε̂t − (ζt − ζ̄n)) =
k∑

t=p+1

(ε̂t − ζt)−
k

n− p

n∑
t=p+1

(ε̂t − ζt)

=
k∑

t=p+1

(f(Xt−1, θ0)− f(Xt−1, θ̂n))− k

n− p

n∑
t=p+1

(f(Xt−1, θ0)− f(Xt−1, θ̂n)) (6.1)
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6 Proofs of Section 3

A Taylor expansion of f yields

f(Xt−1, θ̂n)− f(Xt−1, θ̃0) = ∇f(Xt−1, θ̃0)T (θ̂n − θ̃0)

+
1

2
(θ̂n − θ̃0)T∇2f(Xt−1, ξ)(θ̂n − θ̃0), (6.2)

where ∇f(Xt−1, θ) is the gradient with respect to θ and ∇2f(Xt−1, θ) is the Hessian

matrix, θ̃0 < ξ < θ̂n elementwise. Furthermore the Hessian matrix is by the compactness
of K uniformly bounded by O(1) max16i6p max16j6p |Xt−iXt−j| similarly as in the proof
of Theorem 2.2. The uniform ergodic theorem 5.1 yields

sup
p<k6n

1

k

k∑
t=p+1

‖∇2f(Xt−1, ξ)‖∞ = OP (1),

where ‖(αi,j)‖∞ = maxi,j |αi,j|. Together with (6.2) this yields uniformly in k

k∑
t=p+1

(f(Xt−1, θ̂n)− f(Xt−1, θ̃0))

=
k∑

t=p+1

∇f(Xt−1, θ̃0)T (θ̂n − θ̃0) +OP

(
k‖θ̂n − θ̃0‖2

)
. (6.3)

Assumption A.1 and the compactness of K show that E|∇f(Xt−1, θ̃0)|ν < ∞, since

‖∇f(Xt−1, θ̃0)‖∞ = O(max16j6k |Xt−j|), where ‖(ai)‖∞ = maxi |ai|. As in the proof of

Theorem 2.2 Assumption A.4 shows that ∇f(Xt−1, θ̃0) is mixing with exponential rate,
hence by Kuelbs and Philipp [33] an invariance principle analogous to (3.3) holds, which
implies the following law of iterated logarithm

k∑
t=p+1

(∇f(Xt−1, θ0)T − E∇f(Xt−1, θ0)T ) = O(
√
k log log k) a.s. (6.4)

A different proof of a law of iterated logarithm for mixing sequences but in the univariate
situation is given by Oodaira and Yoshihara [40]. Together with Theorem 2.2 (6.1), (6.3)
and (6.4) yield

max
p<k6n

1√
k

∣∣∣∣∣
k∑

t=p+1

(ε̂t − (ζt − ζ̄n))

∣∣∣∣∣ = OP

(√
log log n

n

)
.

Similar arguments yield the assertion if we replace 1/
√
k by 1/

√
n− p− k since by (6.1)

k∑
t=p+1

(ε̂t − (ζt − ζ̄n)) =
n∑

t=k+1

(ε̂t − (ζt − ζ̄n)).

This proves assertion a). Similar arguments yield that

k∑
t=k−G+1

(ε̂t − (ζt − ζ̄n−p)) = OP

(√
log log n

)
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6 Proofs of Section 3

uniformly in k, thus assertion b) follows.

Proof of Theorem 3.1. Lemma 6.1 shows that we can replace ε̂i in the statistics by
ζi − ζ̄n−p. Concerning Tn2 note that

t(1− t)
q(t)

= O(1),

by Csörgő and Horváth [11] (Chapter 4, Corollary 1.2). By the invariance principle (3.3)
one can replace ζi by i.i.d. normal random variables with mean 0 and variance τ 2 by
standard arguments from change-point analysis which are sketched below. The results
then follow by classical results where ε̂(t) in the statistics is replaced by ξ(t)− ξ̄n−p and
{ξi} i.i.d. N(0, τ 2). For the proofs and further references we refer to the book by Csörgő
and Horváth [12]. The result for d) can be found in Chen [9].

W.l.o.g. let Eζ1 = 0. The invariance principle (3.3) implies a law of iterated logarithm
from which we can deduce

max
16k6logn

√
n

k(n− k)

∣∣∣∣∣
k∑

t=p+1

(ζt − ζ̄n−p)

∣∣∣∣∣ = oP

(
β(log n)

α(log n)

)
and an analogous expression for k > n − log n as well as for

∑k
t=p+1(ξt − ξ̄n−p). This

shows that

P

(
α(log n) max

16k6n

√
n

k(n− k)

∣∣∣∣∣
k∑

t=p+1

(ζt − ζ̄n−p)

∣∣∣∣∣− β(log n) 6 y

)

= P

(
α(log n) max

logn6k6n−logn

√
n

k(n− k)

∣∣∣∣∣
k∑

t=p+1

(ζt − ζ̄n−p)

∣∣∣∣∣− β(log n) 6 y

)
+ o(1).

Another application of the invariance principle shows that

max
logn6k6n−logn

√
n

k(n− k)

∣∣∣∣∣
k∑

t=p+1

(ζt − ζ̄n−p)−
k∑

t=p+1

(ξt − ξ̄n−p)

∣∣∣∣∣ = oP (1)

finishing the proof for Tn1. Noting that by Csörgő and Horváth [11] (Chapter 4, Corol-

lary 4) limcn→0 supt6cn

√
t

q(t)
= 0 the results for the other statistics follow similarly.

Proof of Lemma 3.1. First let us recall, from Theorem 2.2, that

θ̂n − θ0 = Op

(
1√
n

)
. (6.5)

Then, we rewrite

n∑
t=p+1

ε̂2
t =

n∑
t=p+1

ε2
t − 2

n∑
t=p+1

εt(f(Xt−1, θ̂n)− f(Xt−1, θ0))

+
n∑

t=p+1

(f(Xt−1, θ̂n)− f(Xt−1, θ0))2. (6.6)
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6 Proofs of Section 3

From Marcinkiewicz-Zygmund (cf. e.g. Chow and Teicher [10], Theorem 5.2.2) we have
for 2 6 ν < 4

1

n− (H(p+ 2) + 1)

n∑
t=p+1

ε2
t = σ2 + oP

(
n−(ν−2)/ν

)
respectively OP (n−1/2) by the central limit theorem if at least four moments exist. Anal-
ogously to (6.3) using only a first-order Taylor expansion we get by (6.5):

1

n− (H(p+ 2) + 1)

n∑
t=p+1

(f(Xt−1, θ̂n)− f(Xt−1, θ0))2 = OP

(∥∥∥θ̂n − θ0

∥∥∥2
)

= OP

(
1

n

)
.

Concerning the mixed term the Cauchy-Schwartz inequality yields

1

n− (H(p+ 2) + 1)

n∑
t=p+1

εt(f(Xt−1, θ̂n)− f(Xt−1, θ0)) = OP

(
n−1/2

)
,

which finishes the proof by (6.6).

Proof of Theorem 3.2. We can assume w.l.o.g. that θ̂n is in the interior of K since
otherwise we reject the null hypothesis right away. Hence, by (1.6) it holds

Ŝn(k∗) =
k∗∑

j=p+1

(Xj − f(Xj−1, θ̂n)) = −
n∑

j=k∗+1

(Xj − f(Xj−1, θ̂n)). (6.7)

This yields on the one hand

Ŝn(k∗) =
k∗∑

i=p+1

(Zi − f(Zi−1, θ̂n))

= k∗
(
EZ1 − Ef(Zp, θ)|θ=θ̂n

)
+

k∗∑
i=p+1

(Zi − EZ1)

+O

(
sup
θ∈K

∣∣∣∣∣
k∗∑

i=p+1

(f(Zi−1, θ)− Ef(Zp, θ))

∣∣∣∣∣
)

= λn
(
EZ1 − Ef(Zp, θ)|θ=θ̂n

)
+ oP (n)

since by Theorem 5.1 a uniform law of large numbers holds (note that supx supθ∈K |f(x, θ)| =
O(1)).
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6 Proofs of Section 3

On the other hand we obtain similarly (for Yj = (Yj, . . . , Yj−p)) using (6.7)

Ŝn(k∗) = −(1− λ)n
(
EY1 − Ef(Yp, θ)|θ=θ̂n

)
+ oP (n),

since f(Yj, θ) is stationary and ergodic by Assumption MS.1. Together we obtain by
Assumption A.6 (a)∣∣∣Ŝn(k∗)

∣∣∣ > nC min(λ, 1− λ) + oP (n) (6.8)

for some constant C > 0, which implies immediately that

(log log n)−1/2 Tn1
P−→∞,

which implies in return assertion a) (i). Furthermore, due to Assumption A.2 and since
q ∈ Q0,1 equation (6.8) implies

Tn2(q)
P−→∞,

hence a) (ii). Concerning a) (iii) similar arguments yield∣∣∣Ŝn(k∗)− Ŝn(k∗ −G)
∣∣∣ = G

∣∣EZ1 − Ef(Zp, θ)|θ=θ̂n
∣∣+ oP (G)∣∣∣Ŝn(k∗ +G)− Ŝn(k∗)

∣∣∣ = G
∣∣EY1 − Ef(Yp, θ)|θ=θ̂n

∣∣+ oP (G),

hence by Assumption A.6 (a)

Tn3(G) >
√
GC + oP (

√
G)

for some C > 0, which in turn yields (log(n/G))−1/2Tn3(G)
P−→ ∞ and hence the

assertion. Concerning a) (iv) we need again a slight variation of the argument, namely
it holds uniformly in k

∣∣∣Ŝn(k)
∣∣∣ =

{
k
∣∣EZ1 − Ef(Zp, θ)|θ=θ̂n

∣∣+ oP (k), n/ log n < k 6 k∗,

(n− k)
∣∣EY1 − Ef(Yp, θ)|θ=θ̂n

∣∣+ oP (n− k), k∗ < k < n− n/ log n.

Since by (3.1)

1

n

∑
k∗>k> n

logn

k2/n

r(k/(n− p))
>

n

log n

(∫ λ

0

t

r(t)
dt+ o(1)

)

and an analogous expression for k∗ 6 j 6 n − n/ log n, we obtain by Assumption A.6
(a)

Tn4(r) > oP

(
n

log n

)
+ C

n

log n

for some C > 0 and hence the assertion.
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6 Proofs of Section 3

Similarly to Tn3(G) we obtain for b) that

T̃n3(G) >
1√
2G

∣∣∣Ŝn(k∗ +G)− 2Ŝn(k∗) + Ŝn(k∗ −G)
∣∣∣

>
√
G/2

∣∣(EZ1 − Ef(Zp, θ)|θ=θ̂n)− (EY1 − Ef(Yp, θ)|θ=θ̂n)
∣∣+ oP (

√
G),

and hence the assertion.

Proof of Corollary 3.1. The proof of Theorem 3.2 yields that

sup
t∈[0,1]

∣∣∣∣ 1n ∣∣∣Ŝn(bntc)
∣∣∣− Ln(t)

∣∣∣∣ = oP (1),

where

Ln(t) =


t
∣∣EZ1 − Ef(Zp, θ)|θ=θ̂n

∣∣ , t < λ,

max
(
λ
∣∣EZ1 − Ef(Zp, θ)|θ=θ̂n

∣∣ , (1− λ)
∣∣EY1 − Ef(Yp, θ)|θ=θ̂n

∣∣) , t = λ,

(1− t)
∣∣EY1 − Ef(Yp, θ)|θ=θ̂n

∣∣ , t > λ.

Ln(t) has a unique maximum in t = λ for all n, is equicontinuous (with respect to n)
for all t 6= λ (since f(x, θ) is bounded). Let ξn := max(|Ef(Zp, θ)|θ=θ̂n − EZ1| , |EY1 −
Ef(Yp, θ)|θ=θ̂n|) with P (ξn > c)→ 1 by Assumption A.6 (a). Since ξ > c− (c− ξ)+ and
P ((c− ξ)+ > ε) 6 P (ξ < c) = 1− P (ξ > c)→ 0, it holds ξn > c + oP (1). We can now
show that

inf
n

(Ln(λ)− Ln(t)) > c(t, λ) + oP (1), c(t, λ) > 0 for any t 6= λ

We prove this assertion for t < λ, the assertion for t > λ is analogous. First, consider
the case when θ̂n is such that |Ef(Zp, θ)|θ=θ̂n − EZ1| > min

(
1−λ
λ
, 1
)
ξn. In this case it

can easily be seen that

Ln(λ)− Ln(t) > (λ− t) ξn min

(
1− λ
λ

, 1

)
> c(λ− t) min

(
1− λ
λ

, 1

)
+ oP (1).

Otherwise it holds |Ef(Zp, θ)− EZ1| < min
(

1−λ
λ
, 1
)
c, hence by by definition of ξn that

|EY1 − Ef(Yp, θ)|θ=θ̂n| > c, which yields

Ln(λ)−Ln(t) > ξn

[
1− λ− tmin

(
1− λ
λ

, 1

)]
> (λ− t) c min

(
1− λ
λ

, 1

)
+ oP (1),

proving the assertion.

From this we can conclude the proof. We only give the argument for real sequences

sn(t) and ln(t) – the assertion for random sequences 1
n

∣∣∣S̃n(bntc)
∣∣∣ and Ln(t) then follows

via the subsequence principle. This variation of the standard proof is necessary since
we do not know anything about the limit of Ln(t) (not even if it exists): Suppose
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λ̂n = arg max(sn(t)) 6→ λ. Because [0, 1] is compact there exists a subsequence λ̂α(n) and

t1 6= λ with λ̂α(n) → t1, hence

|sα(n)(λ̂α(n))− yα(n)(t1)| 6 max
t
|sα(n)(t)− yα(n)(t)|+ |yα(n)(λ̂α(n))− yα(n)(t1)| → 0,

since by assumption supt |sα(n)(t) − ln(t)| → 0 and by the equicontinuity of ln, n ∈ N.
Since infn(ln(λ)− ln(t1)) > c(t1, λ) > 0 we conclude

yα(n)(λ)− sα(n)(λ̂α(n)) = yα(n)(λ)−yα(n)(t1) +yα(n)(t1)− sα(n)(λ̂α(n)) > c(t1, λ) +o(1),

but this is a contradiction since by assumption it holds

|sn(λ̂n)− ln(λ)| = | sup
t
sn(t)− sup

t
ln(t)| 6 sup

t
|sn(t)− ln(t)| → 0.
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