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Abstract

We study an AMOC time series model with an abrupt change in the mean and
dependent errors that fulfill certain mixing conditions. It is known how to construct
resampling confidence intervals using blocking techniques, but so far no studentizing
has been considered. A simulation study shows that we obtain better intervals by
studentizing.
When studentizing dependent data, we need to use flat-top kernels for the estimation
of the asymptotic variance. It turns out that this estimator possibly taking changes
into account behaves much better than the corresponding Bartlett estimator. Since
the asymptotic distribution of change-point statistics for time-series depends on this
value, having a good estimator under the null as well as alternatives is essential for
testing problems.
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1 Introduction

Recently a number of papers has been published on possible application of bootstrapping
or permutation methods in change-point analysis, confer Hušková [5] for a recent survey.
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1 Introduction

Most of these papers are concerned with obtaining critical values for the corresponding
change-point tests. Another important issue in change-point analysis, however, is how to
obtain confidence intervals for the change-point. In a previous paper [6] we constructed
bootstrap confidence intervals for the change-point in a model with dependent data.
However, we did not consider studentizing (also called pivoting) techniques and in fact
they have not been used in the independent case either for the construction of confidence
intervals for the change-point.

In this paper we prove that the studentized confidence intervals are also asymptotically
valid, a simulation study shows that their small sample behavior is in fact better than
for the original ones without studentizing. In case of dependent data it is not entirely
clear how best to do the studentizing, i.e. which estimators for the variance to use. We
follow the approach by Götze and Künsch [4] who showed second-order correctness of
the block bootstrap when using specific estimators for the variance. Most importantly
they use the natural variance estimator for the block bootstrap (details can be found
below), which is closely related to the Bartlett estimator. But second-order correctness
is only achieved if for the variance estimator of the original sequence different weights
than triangular ones (as in the Bartlett estimator) are used. For example one can use the
flat-top kernel estimators as suggested by Politis and Romano [10], for which adaptive
bandwidth selection procedures exist (cf. Politis [9]).

As a side result we obtain that those estimators taking possible changes into account
under the null as well as under alternatives are consistent, moreover they behave much
better than the Bartlett estimator. Since the asymptotic of test statistics for change-
point problems for time-series usually depends on this asymptotic variance, it is very
important to have good estimators in order to construct asymptotic tests with a rea-
sonable small sample bevavior under the null hypothesis as well as alternatives. The
Bartlett estimator is not satisfactory in that respect, confer e.g. the simulation study in
Kirch [8]. Therefore this result is very important by itself.

We consider the following At-Most-One-Change (AMOC) location model

X(i) = µ+ d 1{i>m} + e(i), 1 6 i 6 n, (1.1)

where m = m(n) = bnϑc, 0 < ϑ < 1, d = dn may depend on n. The errors {e(i), 1 6
i 6 n} are stationary and strong-mixing with a rate specified below,

E e(i) = 0, 0 < σ2 = E e(i)2 <∞, E |e(i)|ν <∞ for some ν > 4,∑
h>0

|γh| <∞, where γh = cov(e(0), e(h)), (1.2)

and

τ2 := γ0 + 2
∑
h>1

γh <∞. (1.3)

Recall the definition of the fourth order cumulant κ(h, r, s) given by

κ(h, r, s) = E(e(k)e(k + h)e(k + r)e(k + s))− (γhγr−s + γrγh−s + γsγh−r).

We assume now that

sup
h

∑
r,s

|κ(h, r, s)| <∞. (1.4)
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1 Introduction

In this paper we are interested in getting approximation of the distribution of the fol-
lowing class of change-point estimators

m̂(γ) = arg max{|Sγ(k)|; k = 1, . . . , n− 1}
= min{k; 1 6 k < n, |Sγ(k)| > |Sγ(j)|, j = 1, . . . , n− 1},

(1.5)

where

Sγ(k) =
(

n

k(n− k)

)γ k∑
i=1

(X(i)− X̄n), 0 6 γ 6
1
2
,

and X̄n = n−1
∑n

i=1X(i).

In order to prove validity of the developed bootstrap scheme as well as to obtain the
asymptotics under the null hypothesis for the change-point estimator we have to use
some results like laws of (iterated) logarithm or large numbers for a triangular array.
Therefore we need additionally to assumptions (1.2) and (1.4) the following one for
certain δ,∆ > 0 (in some cases > 2):

(A) Let {e(i) : i ∈ Z} be a strictly stationary sequence with E e(0) = 0. Assume there
are δ,∆ > 0 with

E |e(0)|2+δ+∆ 6 D1

and
∞∑
k=0

(k + 1)δ/2αn(k)∆/(2+δ+∆) 6 D2, (1.6)

where αn(k) is the corresponding strong mixing coefficient, i.e.

αn(k) = sup
A,B
|P (A ∩B)− P (A)P (B)| ,

where A and B vary over the σ-fields A(e(0), e(−1), . . .) respectively
A(e(k), e(k + 1), . . .).

In fact this assumption is only needed to obtain a Donsker type central limit theorem
for the partial sums of the errors (to derive the asymptotics under the null hypothesis)
as well as bounds on higher order moments of certain sums of the observed error se-
quence. This in turn yields laws of large numbers and laws of (iterated) logarithm. The
proofs can easily be adapted to allow for errors that do not fulfill condition (A) but the
necessary moment conditions. As an example a large class of linear processes fulfills the
assumption. More details can be found in Hušková and Kirch [6].

As in the previous paper [6] we will only consider the case γ = 1/2 in the following. The
results for 0 6 γ < 1/2 can be obtained in a similar way as outlined in Antoch et al. [1].
In the simulation study we will also consider other choices of γ.

In the following m̂ := m̂(1/2), S(k) := S1/2(k).
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2 Flat-top kernel estimators taking possible changes into account

2 Flat-top kernel estimators taking possible changes into
account

In this section we consider the flat-top kernel estimators for τ2 as in (1.3) of Politis and
Romano [10] but taking possible changes into account.

Precisely consider

τ̂2 = τ̂2(Λn) = R̂(0) + 2
Λn∑
k=1

w(k/Λn)R̂(k), (2.1)

where for a > b we define
∑b

a = 0 and R̂(k) = 1
n

∑n−k
t=1 ê(t)ê(t+ k) with

ê(t) = X(t)− X̄bm1{t6 bm} − X̄0bm1{t>bm},
µ̂ = X̄bm, d̂n = X̄0bm − X̄bm.

X̄0bm = 1
n−bm∑n

i= bm+1Xi, and

w(t) =


1, |t| 6 1/2,
2(1− |t|), 1/2 < t < 1,
0, t > 1.

Concerning the bandwidth Λn we assume the following

Λn →∞,
Λn log n log log n

n
= o(1). (2.2)

If we use a triangular weight function w(t) = (1 − |t|)1[−1,1] instead, we obtain the
classical Bartlett estimator.

In this paper we need the consistency of this estimator in order to be able to obtain
the asymptotic correctness of the studentized confidence intervals in the next section as
proposed by Götze and Künsch [4].

Apart from this specific application it is very important to have a good estimator for
this value (under the null as well as alternatives) since the performance of change-point
tests for dependent data depends crucially on it as can e.g. be seen by the simulation
study in Kirch [8]. Therefore the following theorem is of independent interest. Note that
it also holds for the null hypothesis and all types of alternatives without restriction.

Theorem 2.1. Assume that (1.1) - (1.4) with 0 < ϑ < 1, dn = 0 corresponds to the null
hypothesis. Moreover let assumption (A) be fulfilled for some δ,∆ > 0. Then it holds
for a bandwidth Λn fulfilling (2.2)

τ̂2(Λn) P−→ τ

This remains true for any bounded weight function ω(·) which is continuous at 0 with
ω(0) = 1.
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3 Studentized confidence intervals for the change-point estimator

As for the Bartlett estimator the choice of Λn is crucial for the performance of the
estimator. But for the flat-top kernel there exists an adapative selection procedure,
for which Politis [9] has shown that the bandwidth chosen in that way captures the
theoretically optimal rates very well. This is not true anymore if we use this selection
procedure with the Bartlett estimator.

We shortly repeat the selection procedure for the sake of completeness:

Adaptive Selection of the bandwidth Λ: Let λ̂ be the smallest positive integer such
that

∣∣∣R̂(λ̂+ k)/R̂(0)
∣∣∣ < c

√
log n/n, for k = 1, . . . ,Kn, where c > 0 is a fixed constant,

and Kn is a positive, nondecreasing integer-valued function of n such that Kn = o(log n).
Then choose Λ̂n = 2λ̂.

Remark 2.1. The choice of the parameters c and Kn is left to the practitioner. However,
Politis [9] suggests to use c = 2 and Kn = 5 for the usual sample sizes approximately
between 100 and 1000. Our simulations show that these values indeed give good results.
But different choices give very similar results showing that the procedure is rather robust
with respect to the choice of c and Kn. In fact all of the results are better than what
we get using the Bartlett estimator (with a variety of choices for Λn). For practical
applications we recommend the choice c = 1.4 and Kn = 3, since it is a good compromise
between c = 2,Kn = 5 which works best under positive correlation and c = 1,Kn = 1
which works best under negative correlation.

Unlike the Bartlett the flat-top kernel estimator can be negative, especially if τ is small.
In this case the Bartlett usually overestimates τ (while for large values of τ both es-
timators underestimate it). The flat-top kernel manages to capture small τ quite well
and large τ still better than the Bartlett. Nevertheless it is not desirable for many ap-
plications that this estimator is too close to zero (in comparison to τ). The reason is
that for testing we typically divide by it so that the statistic becomes quite large thus
rejecting the null hypothesis wrongly, for confidence intervals it decreases the length of
the interval too much.

This is why we propose to use the adapted estimator

τ̃2 = τ̃2(Λn) = max(τ̂2(Λn), 1/ log2 n). (2.3)

3 Studentized confidence intervals for the change-point
estimator

Antoch et al. [1] have used bootstrapping methods to obtain confidence intervals for the
change-point in the independent situation, Hušková and Kirch [6] have used a circular
overlapping block bootstrap for the dependent situation. Both papers do not consider
studentizing although the results for small samples can be significantely improved in this
way.

We will concentrate on the dependent situation here, since the extension to the i.i.d.
situation is straightforward.

5



3 Studentized confidence intervals for the change-point estimator

First, we shortly explain how the circular overlapping block bootstrap works, then we
introduce studentizing and give the main result showing that the studentized confidence
intervals are in fact asymptotically correct.

Let µ̂1 be an estimator for µ, µ̂2 for µ + dn, and d̂n for dn satisfying d̂n − dn =
O(
√

log(n)/n) a.s., e.g.

µ̂1 =
1
m̂

bm∑
i=1

X(i), µ̂2 =
1

n− m̂

n∑
i= bm+1

X(i), d̂n = µ̂2 − µ̂1, (3.1)

where m̂ = m̂(1/2) as in (1.5).

Define the estimated residuals and the centered residuals by

ê(i) = X(i)− µ̂11{i6 bm} − µ̂21{i>bm},
ẽ(i) = ê(i)− 1

n

n∑
j=1

ê(j),

respectively.

We will use a circular overlapping block bootstrap of the centered estimated residuals
{ẽ(i) : 1 6 i 6 n}. It has the advantage of being automatically centered around the
sample mean.

The general idea of block bootstrapping methods is to split the observation sequence of
length n into sequences of length K. Then we put L of them together to a bootstrap
sequence (i.e. n = KL). We keep the order within the blocks. K and L depend on n
and converge to infinity with n.

The idea is that, for a properly chosen block-length K, the block contains enough infor-
mation about the dependency structure so that the estimate is close to the null hypoth-
esis.

We assume in the following that

K,L→∞ and K = K(L), n = n(L) = KL, K/L = o(1). (3.2)

Let {U(i) : 1 6 i 6 L} be i.i.d. with P (U(1) = i) = 1
n for i = 0, . . . , n − 1 independent

of the observations X(1), . . . , X(n). Take the i.i.d. bootstrap sample e∗(Kl + k) =
ẽ(U(l) + k), where ẽ(j) = ẽ(j − n) for j > n (hence the name circular bootstrap).

Consider the bootstrap observations

X∗(j) = e∗(j) + µ̂11{j6 bm} + µ̂21{bm<j6n}.
We deal now with the following bootstrap estimator of the change-point m

m̂∗ = arg max{|S∗(k)|; k = 1, . . . , n− 1}, (3.3)

where

S∗(k) =
(

n

k(n− k)

)1/2 k∑
i=1

(X∗(i)− X̄∗n).
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3 Studentized confidence intervals for the change-point estimator

Moreover we also define

d̂∗n =
1

n− m̂∗
n∑

i= bm∗+1

X∗(i)− 1
m̂∗

bm∗∑
i=1

X∗(i)

and

τ̂2∗ = τ̂2∗(K) =
1
L

L−1∑
l=0

(
1√
K

K∑
k=1

(e∗(Kl + k)− ē∗n)

)2

, (3.4)

which is the obvious estimate of the conditional variance of the bootstrap sample.

In our previous paper [6] we showed that it is asymptotically correct to approximate m̂−
m by m̂∗−m̂, so that the confidence interval for the change-point m can be approximated
by the distribution of 2m̂− m̂∗.

In this paper we want to use studentizing meaning that we will now approximate
(d̂/τ̂)2(m̂ − m) by (d̂∗/τ̂∗)2(m̂∗ − m̂). This usually leads to better small sample re-
sults since it captures not only first order properties but also second order properties for
a large class of statistics. For independent data this is quite straightforward, since we can
use τ̂2 = 1

n−1

∑n
i=1(ẽ(i))2 and τ̂2∗ = 1

n−1

∑n
i=1(e∗(i) − ē∗n)2. However in the dependent

situation it is not clear what variance estimators should be used for the original sample
as well as the bootstrap sample. In fact, Götze and Künsch [4] investigated for which
variance estimators second-order correctness is obtained. Surprisingly it turns out that
one needs to use τ̂2∗ as in (3.4), which is closely related to the Bartlett estimator, but
that one cannot use the Bartlett for the estimation of τ2, but has to take an estimator
like the flat-top kernel estimator from the previous section, i.e. τ̃2 as in (2.3).

With P ∗, E∗, var∗, . . . we will denote probability, expectation, variance,. . ., given
X(1), . . . , X(n).

Theorem 3.1. Assume that (1.1) - (1.4) with 0 < ϑ < 1, (2.2) and (3.2) hold. Moreover
let

d̂n − dn = O

(√
log n
n

)
P − a.s. (3.5)

be fulfilled in addition to

d−2
n n−1 log n→ 0 (3.6)

as well as dn → 0 (i.e. a local change). Moreover let assumption (A) be fulfilled for
some

0 < δ(2) + ∆(2) < (δ(1) − 2)/2 < (ν − 4)/2, ∆(1) = ν − 2− δ(1). (3.7)

If d2
nK → 0, then

sup
x∈R

∣∣∣∣∣P ∗
(

d̂∗2

τ̂2∗(K)
(m̂∗ − m̂) 6 x

)
− P

(
d̂2

τ̃2(K)
(m̂−m) 6 x

)∣∣∣∣∣→ 0 P − a.s.
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4 Simulations

Since the limit distribution (for both the bootstrap as well as the original statistic under
the null) is continuous (as has been pointed out by Remark 2.1 in Hušková and Kirch [6])
the described sampling scheme provides bootstrap approximations to the (1−α)-quantile
for arbitrary α ∈ (0, 1). Thus the bootstrap based approximation for the change-point
m can be constructed along the usual lines. Precisely the (1 − α)-bootstrap confidence
interval is given by[

m̂− τ̃2(K)

d̂2
n

q∗U (α/2) , m̂− τ̃2(K)

d̂2
n

q∗L(α/2)

]
,

where

q∗L(α/2) = sup

{
u; P ∗

(
d̂∗2

τ̂2∗(K)
(m̂∗ − m̂) < u

)
6 α/2

}
and

q∗U (α/2) = inf

{
u; P ∗

(
d̂∗2

τ̂2∗(K)
(m̂∗ − m̂) > u

)
6 α/2

}
.

Usually one uses the empirical bootstrap distribution of m̂∗ for say 10 000 random boot-
strap samples.

4 Simulations

The simulation study is divided into two parts, in a first part we will investigate how
well the new variance estimator based on flat-top kernels behaves, in a second part we
investigate the small sample behavior of the studentized confidence intervals. Due to
limitations of space and similarity of results we present here only a very small part of
the simulations study – the complete simulation results (.pdf-file, 143 pages, 16 MB for
the simulation study concerning the flat-top kernel estimators, and 191 pages, 23 MB for
the simulation study concerning the studentized confidence intervals) can be obtained
from the second author upon request. In the following simulation study we use a slightly
different way of estimating the covariances than before, namely we do not use ’mixed
terms’ (where we use the product of two estimated errors before and after the change).
Precisely we use (with appropriate weights – either flat-top or Bartlett)

τ̂2 = τ̂2(Λn) = R̂(0) + 2
Λn∑
k=1

w(k/Λn)R̂(k),

where

R̂(k) =
1
n

bm−k∑
t=1

(X(t)− X̄bm)(X(t+ k)− X̄bm) +
n−k∑

t= bm+1

(X(t)− X̄0bm)(X(t+ k)− X̄0bm)

 .

In simulations (cf. the above mentioned complete simulation results) these estimators
behave almost the same as the ones based on the entire estimated error sequence, but
sometimes slightly better. However, some additional theoretic problems arise. The
simulations were written in the programming language R.
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4 Simulations

4.1 Flat-top kernel estimators

In this subsection we want to investigate how well the flat-top kernel estimator with the
automatic bandwidth selection procedure as proposed by Politis [9] works in comparison
with the Bartlett estimator. Moreover we will investigate how sensitive the procedure is
with respect to the selection of the parameters c and Kn.

To this end we use AR(1) as well as MA(1) sequences with normal as well as exponential
errors, change-points at m = 1/4n, 1/2n, 3/4n, n = 80, 200, and different jump sizes
d = 0, 0.5, 1, 2. We then plot the estimated density of the estimator (using the standard
R routine, which uses a Gaussian kernel, where the bandwidth is chosen according to
Silverman’s rule of thumb (Silverman [12], p.48, Equation (3.31)). The vertical line
indicates the true value which are estimated.

Since the results are very similar no matter what type of errors we use, as well as for
different locations and sizes of the change-point, we give only some results for exponential
errors, a change-point at m = 1/4n as well as d = 0, 1. The complete simulation results
can be obtained from the second author (.pdf-file, 143 pages, 20 MB).

The results can be found in Figures 4.1 and 4.2.

The estimated density for the Bartlett kernel can be negative (for small values of τ),
but this is just an artifact from the density estimation procedure, since the Bartlett
estimator is by definition positive. The flat-top estimator on the other hand can become
negative (for small values of τ), but this is also the reason why it estimates small values
of τ better (confer e.g. Figure 4.2).

The simulations show that the automatic bandwidth selection procedure is not very
sensitive to what initial parameters for c and Kn are used – in fact the results are always
very similar. As a contrast the Bartlett estimator depends crucially on a good choice of
bandwidth (in the simulations we used the bandwidthes L = 0.5n, 0.1n, 0.2n). Moreover
the optimal bandwidth depends on what type of dependency is present.

It is clear that the flat-top kernel estimator with automatic bandwidth selection is always
at least as good as the Bartlett estimator with the according to the simulations best
bandwidth, most of the time even better. Moreover both estimators are significantely
underestimating the true value for large τ (confer e.g. Figure 4.1, (5) – (8)). However, for
larger sample sizes the estimation does get better. The Bartlett estimator additionally
overestimates small values of τ , while the flat-top estimaterdoes fine there.

4.2 Studentized confidence intervals

In the previous chapter we have established the asymptotic validity of the studentized
bootstrap confidence intervals. The question remains how well these confidence inter-
vals behave for small samples and also how well they behave in comparison with the
asymptotic resp. non-studentized intervals.

In this section we not only consider γ = 1
2 but also γ = 0. The difference is that the

asymptotic confidence intervals depend on the unknown parameter ϑ for 0 6 γ < 1
2 .
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4 Simulations

(a) Bartlett: independent errors, d = 0 (null),
n = 80

(b) Flat-top: independent errors, d = 0 (null),
n = 80

(c) Bartlett: independent errors, d = 1, n = 80 (d) Flat-top: independent errors, d = 1, n = 80

(e) Bartlett: AR(1), ρ = 0.3, d = 1, n = 80 (f) Flat-top: AR(1), ρ = 0.3, d = 1, n = 80

(g) Bartlett: AR(1), ρ = 0.3, d = 1, n = 200 (h) Flat-top: AR(1), ρ = 0.3, d = 1, n = 200

Figure 4.1: Comparison of Bartlett estimator with flat-top kernel estimator, change at
m = 1/4n, exponential errors
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4 Simulations

(a) Bartlett: MA(1), ρ = −0.8, d = 1, n = 80 (b) Flat-top: MA(1), ρ = −0.8, d = 1, n = 80

Figure 4.2: Comparison of Bartlett estimator with flat-top kernel estimator, change at
m = 1/4n, exponential errors

Moreover we consider changes in the mean of size d = dn = 0.5, 1, 2. The latter ones
can hardly be regarded as local changes, however we are still interested in the behavior
of the bootstrap intervals, since we conjecture it will also be valid in those cases.

For the simulations we use an autoregressive as well as moving average sequence of or-
der one as an error sequence with standard normally distributed innovations as well as
exponential innovations and different values of ρ = −0.8,−0.3,−0.1, 0.1, 0.3, 0.8. We
consider changes at m = n/4, n/2, n = 80, 200. For the asymptotic confidence intervals
we use the flat-top kernel estimator (2.1) with the described automatic bandwidth se-
lection procedure (Kn = 3, c = 1.4). This yields already better results than using the
Bartlett estimator with bandwidth 0.1n as done in Hušková and Kirch [6].

For the sake of completeness we also simulate the studentized confidence intervals for
the i.i.d. situation. We will not show the results here due to limitations of space, but
the studentizing also gives better results in the i.i.d. situation.

A very small selection of representative results is given in this section, the complete
simulation results can be obtained from the second author upon request (.pdf-File, 191
pages, 23 MB).

The goodness of confidence intervals can essentially be determined by two criteria:

C.1 The probability that the actual change-point is outside the (1-α)-confidence interval
should be close to (smaller than) α.

C.2 The confidence intervals should be short.

We visualize the first quantity by using CoLe-Plots (Confidence-Level-Plots) and the
second one by using CoIL-Plots (Confidence-Interval-Length-Plots).

CoLe-Plots

We explain how the plots are created using the example of asymptotic confidence inter-
vals. The general version of Theorem 2.1 in Hušková and Kirch [6] yields that the asymp-
totic confidence intervals are calculated using the distribution of Z = m̂− τ̂2/d̂2

nV (ϑ̂, γ),
where V (ϑ̂, γ) is as in Remark 2.4 in Hušková and Kirch [6] and ϑ̂ = m̂/n. The CoLe-
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4 Simulations

(a) CoLe-Plot: d = 0.5, m = 40 (b) CoIL-Plot: d = 0.5, m = 40

(c) CoLe-Plot: d = 0.5, m = 20 (d) CoIL-Plot: d = 0.5, m = 20

(e) CoLe-Plot: d = 1, m = 40 (f) CoIL-Plot: d = 1, m = 40

(g) CoLe-Plot: d = 2, m = 40 (h) CoIL-Plot: d = 2, m = 40

Figure 4.3: Comparison of different confidence intervals, AR(1) process with normal
errors, ρ = 0.3, γ = 0, n = 80
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4 Simulations

(a) CoLe-Plot: ρ = −0.3, d = 0.5 (b) CoIL-Plot: ρ = −0.3, d = 0.5

(c) CoLe-Plot: ρ = −0.3, d = 1 (d) CoIL-Plot: ρ = −0.3, d = 1

(e) CoLe-Plot: ρ = −0.3, d = 2 (f) CoIL-Plot: ρ = −0.3, d = 2

(g) CoLe-Plot: ρ = −0.8, d = 1 (h) CoIL-Plot: ρ = −0.8, d = 1

Figure 4.4: Comparison of different confidence intervals, AR(1) process with normal
errors, γ = 0, n = 80, m = 40
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4 Simulations

(a) CoLe-Plot: ρ = −0.3, d = 0.5 (b) CoIL-Plot: ρ = −0.3, d = 0.5

(c) CoLe-Plot: ρ = −0.3, d = 1 (d) CoIL-Plot: ρ = −0.3, d = 1

(e) CoLe-Plot: ρ = 0.3, d = 0.5 (f) CoIL-Plot: ρ = 0.3, d = 0.5

(g) CoLe-Plot: ρ = 0.3, d = 1 (h) CoIL-Plot: ρ = 0.3, d = 1

Figure 4.5: Comparison of different confidence intervals, AR(1) process with normal
errors, n = 80, m = 40, γ = 0.5
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4 Simulations

(a) CoLe-Plot: ρ = −0.8 (b) CoIL-Plot: ρ = −0.8

(c) CoLe-Plot: ρ = −0.3 (d) CoIL-Plot: ρ = −0.3

(e) CoLe-Plot: ρ = 0.3 (f) CoIL-Plot: ρ = 0.3

Figure 4.6: Comparison of different confidence intervals, MA(1) process with normal
errors, n = 80, m = 40, d = 1

Plots now draw the empirical distributions function (based on 1 000 observation se-
quences) of 2 min(P (Z 6 m), P (Z > m)). This visualizes C.1, since

m 6∈ CI(1− α) ⇐⇒ P (Z 6 m) 6 α/2 or P (Z > m) 6 α/2
⇐⇒ 2 min(P (Z 6 m), P (Z > m)) 6 α.

Thus for given α on the x-axis the plot shows the empirical probability that m is outside
the (1−α)-confidence interval on the y-axis, hence it visualizes C.1. Optimally, the plot
should be below or (even better) on the diagonal.
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For the bootstrap confidence intervals the procedures works exactly the same but now
the intervals are calculated using the (empirical, based on 10 000 resamples) distribution
of Z̃ = m̂− (d̂∗nτ̂ /(τ̂

∗d̂n)2(m̂∗ − m̂).

CoIL-Plots

We calculate the length of the confidence intervals for levels α = 0.01, 0.02, . . . , 0.1 based
on 1 000 observation sequences. The empirical bootstrap distribution is based on 10 000
random samples as before. Then we plot the mean using a line, linearly interpolated.
So these plots visualize the length of the intervals and thus C.2. However, since the
methods above can yield confidence intervals [lα, uα] with lα < 1 or uα > n, we correct
the length correspondingly, i.e. consider the intervals [max(1, lα),min(n, uα)]. This is
different from the CoIL-Plots in Hušková and Kirch [6].

Note that the scale on the y-axis is not the same for different pictures. This way we can
better compare different methods.

The results of the simulation can be found in Figures 4.3, 4.4, 4.5 and 4.6.

Most of the time the studentized bootstrap behaves best in terms of the coverage prob-
ability C.1, in principal it works better for a positive correlation than for a negative
one. It is interesting that under strong negative correlations the choice of block-length
is crucial for the performance, see especially 4.5 (7), while this is not the case for the
non-studentized bootstrap. This is probably due to the fact that the performance of the
variance estimator is much more important for the studentized than the non-studentized
bootstrap. Moreover, for a MA(1) sequence with ρ = −0.8 the studentized bootstrap
generally does not work anymore. The reason probably is (confer also Figure 4.2) that
the confidence interval is too small. In the bootstrap we multiply with the variance from
the flat-top kernel, which is rather small, and divide by the bootstrap variance (close to
the Bartlett variance estimator), which is too large.

Proofs

Now we will prove our first theorem.

Proof of Theorem 2.1. First we consider the subsequence with m̂ < m. We prove
that we can replace the estimated error sequence in the definition of R̂(k) by the actual
errors {e(i)}. First note that

ê(i) =

{
e(i)− ēbm, i 6 m̂,

e(i)− ē0bm + dn

(
1{i>m} − n−m

n−bm
)
, i > m̂.

Recall

R̂(k) =
1
n

n−k∑
t=1

ê(t)ê(t+ k)

=
1
n

n−k∑
t=1

(e(t)− ēbm1{t6 bm} − ē0bm1{t>bm})(e(t+ k)− ēbm1{t+k6 bm} − ē0bm1{t+k>bm})

+ dn
1
n

min( bm,n−k)∑
t=max( bm−k,0)+1

(e(t)− ēbm)
(

1{t>m−k} −
n−m
n− m̂

)
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+ dn
1
n

n−k∑
t= bm+1

(e(t)− ē0bm)
(

1{t>m−k} −
n−m
n− m̂

)

+ dn
1
n

n−k∑
t= bm+1

(e(t+ k)− ē0bm)
(

1{t>m} −
n−m
n− m̂

)

+ d2
n

1
n

n−k∑
t= bm+1

(
1{t>m} −

n−m
n− m̂

)(
1{t>m−k} −

n−m
n− m̂

)
= A1(k) +A2(k) +A3(k) +A4(k) +A5(k).

By an application of the Hájek -Renyi inequality (cf. Kirch [7], Theorem B.3)

max
16k6n

∣∣∣∣∣ 1√
k

k∑
i=1

e(i)

∣∣∣∣∣ = OP (
√

log n) (.1)

From this we can conclude

A1(k) =
1
n

n−k∑
t=1

e(t)e(t+ k) +OP

(
log n
n

)
,

where the last term is uniformly in k. From Berkes et al. [3], Theorem 1.1 (i) (precisely
equation (2.1) in the proof) and Remark 1.1 we obtain

A1(0) + 2
Λn∑
k=1

w(k/Λn)A1(k) = τ2 + oP (1).

By Theorem 2.1 a) and Remark 2.1 in Hušková and Kirch [6] we obtain

m̂−m = OP (d−2
n ) (.2)

if d−2
n n−1 log n→ 0.

By (.1) and (.2) uniformly in k

A2(k)

= dn
1
n

min( bm,n−k)∑
t=max(min(m−k,bm),0)+1

m− m̂
n− m̂

(e(t)− ēbm)− dn
1
n

min(m−k,bm)∑
t=max( bm−k,0)+1

n−m
n− m̂

(e(t)− ēbm)

= OP

(
|dn|

√
(m− m̂) log n

n

)
=

OP
(√

logn
n

)
, dn >

√
logn log logn

n ,

OP (dn(log n/n)1/2), else

= OP

(
log n log logn

n

)
.
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Similarly

A3(k) = dn
1
n

n−k∑
t=max(m−k,bm)+1

m− m̂
n− m̂

(e(t)− ē0bm)− dn
1
n

m−k∑
t= bm+1

n−m
n− m̂

(e(t)− ē0bm)

= OP

(
|dn|

√
(m− m̂) log n

n

)
=

OP
(√

logn
n

)
, dn >

√
logn log logn

n ,

OP (dn(log n/n)1/2), else

= OP

(
log n log logn

n

)
,

A4(k) = OP

(
log n log log n

n

)
,

and

A5(k)

=
d2
n

n

m−k∑
t= bm+1

(
n−m
n− m̂

)2

− d2
n

n

m∑
t=max(m−k,bm)+1

(n−m)(m− m̂)
(n− m̂)2

+
d2
n

n

n∑
t=m+1

(
m− m̂
n− m̂

)2

= O

(
d2
n

n
(m− m̂)

)
=

{
OP
(

1
n

)
, dn >

√
logn log logn

n ,

O(d2
n), else

= OP

(
log n log logn

n

)
.

Putting everything together we get

τ̂2(Λn) = R̂(0) + 2
Λn∑
k=1

w(k/Λn)R̂(k)

= τ2 + oP (1) +OP

(
log n log logn

n

)(
1 + 2

Λn∑
k=1

w(k/Λn)

)

= τ2 + oP (1) +OP

(
Λn log n log logn

n

)
= τ2 + oP (1).

The arguments for m̂ > m are analogous.

Now we can prove our main theorem.
Proof of Theorem 3.1. In view of Theorem 3.1 in Hušková and Kirch [6] it suffices
to prove

P ∗

(∣∣∣∣∣ d̂∗nd̂n − 1

∣∣∣∣∣ > ε

)
→ 0 P − a.s. (.3)

and

P ∗
(∣∣∣∣ τ̂∗τ̂ − 1

∣∣∣∣ > ε

)
→ 0 P − a.s. (.4)
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We start with proving (.3). It holds for m̂ < m̂∗

(d̂∗n − d̂n)/d̂n = − 1

d̂nm̂∗

bm∗∑
j=1

e∗(j) +
1

d̂n(n− m̂∗)

n∑
j= bm∗+1

e∗(j)− m̂− m̂∗

m̂∗

= B1 +B2 +B3.

First note that by Theorem 2.1 and 3.1 in Hušková and Kirch [6] it holds

m̂∗

m
− 1 =

m̂∗ − m̂+ m̂−m
m

= OP ∗

(
1
nd2

n

)
+O

(
log n
nd2

n

)
= oP ∗(1) P − a.s. (.5)

and analogously

B3 = oP ∗(1) P − a.s.

Moreover equation (.5) together with Lemma 5.4 in [6] implies

|B1| 6
√

m

m̂∗
1

md̂2
n

max
16j6n

1√
j

∣∣∣∣∣
j∑
i=1

e∗(i)

∣∣∣∣∣
= OP ∗

(√
log n
d2
nn

)
= oP ∗(1) P − a.s.,

analogously

B2 = oP ∗(1) P − a.s.

Analogous arguments for m̂ > m̂∗ complete the proof of (.3).

Concerning (.4) by Theorem 2.1 it suffices to prove

P ∗(|τ̂∗ − τ | > ε)→ 0 P − a.s.

By Lemma 5.2 in Hušková and Kirch [6] var∗
(

1√
K

∑K
k=1 e

∗(k)
)

= τ2 +o(1) P −a.s. and

by Lemma 5.4 in [6]
√
Kē∗n = oP ∗(1) P − a.s., thus it suffices to prove

1
L

L−1∑
l=0

( 1√
K

K∑
k=1

e∗(Kl + k)

)2

− var∗
(

1√
K

K∑
k=1

e∗(Kl + k)

) = oP ∗(1) P−a.s.

From (3.6.8) in Kirch [7] (where the stronger assumption (3.6.6) is not needed because
(3.6.9) can be strengthened as pointed out in Hušková and Kirch [6], proof of Lemma
5.2), we obtain (2 < 2 + δ̃ 6 (2 + δ(1))/(2 + δ(2) + ∆(2)), δ̃ < 2)

E∗
∣∣∣∣∣ 1√
K

K∑
k=1

e∗(k)

∣∣∣∣∣
2+eδ

=
1
n

n∑
j=1

∣∣∣∣∣ 1√
K

K∑
k=1

ẽ(j + k)

∣∣∣∣∣
2+eδ

= O(1)
1
n

n∑
j=1

∣∣∣∣∣ 1√
K

K∑
k=1

e(j + k)

∣∣∣∣∣
2+eδ

+O(1)
∣∣∣√Kēn∣∣∣2+eδ

+O(1)
∣∣∣√K(dn + d̂n)

∣∣∣2+eδ

= O(1) P − a.s.

19



References

Since
{

1√
K

∑K
k=1 e

∗(Kl + k) : 1 6 l 6 L
}

is conditional (row-wise) i.i.d., an application
of the Markov inequality as well as the von Bahr-Esseen inequality (cf. e.g. Shorack and
Wellner [11], p. 858) yield

P ∗

 1
L

∣∣∣∣∣∣
L−1∑
l=0

( 1√
K

K∑
k=1

e∗(Kl + k)

)2

− var∗
(

1√
K

K∑
k=1

e∗(Kl + k)

)∣∣∣∣∣∣ > ε


= O(1)L−1−eδ/2 E∗

∣∣∣∣∣∣
L−1∑
l=0

(
1√
K

K∑
k=1

e∗(Kl + k)

)2

− E∗
(

1√
K

K∑
k=1

e∗(Kl + k)

)2
∣∣∣∣∣∣
1+eδ/2

= O(1)L−eδ/2 E∗
∣∣∣∣∣ 1√
K

K∑
k=1

e∗(k)

∣∣∣∣∣
2+eδ

= o(1) P − a.s.

Thus (.4) is proven, which completes the proof.
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[6] Hušková, M. and Kirch, C. Bootstrapping confidence intervals for the change-point
of time series. J. Time Ser. Anal., 2008. To appear.

[7] Kirch, C. Resampling Methods for the Change Analysis of Dependent Data.
PhD thesis, University of Cologne, Cologne, 2006. http://kups.ub.uni-
koeln.de/volltexte/2006/1795/.

[8] Kirch, C. Block permutation principles for the change analysis of dependent data.
J. Statist. Plann. Inference, 137:2453–2474, 2007.

[9] Politis, D. N. Adaptive bandwidth choice. J. Nonparametr. Stat., 15:517–533, 2003.

[10] Politis, D. N. and Romano, J. P. Bias-corrected nonparametric spectral estimation.
J. Time Ser. Anal., 16:67–103, 1995.

20



References

[11] Shorack, G.R., and Wellner, J.A. Empirical Processes with Applications to Statis-
tics. Wiley, New York, 1986.

[12] Silverman, B. W. Density Estimation. Chapman and Hall, London, 1986.

21


	Introduction
	Flat-top kernel estimators taking possible changes into account
	Studentized confidence intervals for the change-point estimator
	Simulations
	Flat-top kernel estimators
	Studentized confidence intervals


