Bootstrapping sequential change-point tests”

Claudia Kirchf

February 2008

Abstract

In this paper we propose some bootstrapping methods to obtain critical values for
sequential change-point tests. We consider a change in the mean with i.i.d. errors.
Theoretical results show the asymptotic validity of the proposed bootstrap proce-
dures. A simulation study compares the bootstrap and the asymptotic tests and
shows that the studentized bootstrap test behaves generally better than asymptotic
tests if measured by a— resp. S—errors and its run length.
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1 Introduction

For many testing procedures in change-point analysis the calculation of critical values
is based on the limit behavior of the test statistic under the null hypothesis. However,
the convergence to the limit distribution of the test statistic is frequently rather slow, in
other cases the explicit form is unknown. For time series models it can also happen that
the limit distribution does not take the small sample dependency structure sufficiently
into account. Therefore permutation and bootstrap tests have been developed. Some
guidelines for bootstrap hypothesis testing are given by Hall and Wilson [5]. For a
thorough introduction into permutation and bootstrap tests we refer to Good [3].

In change-point analysis this approach was first suggested by Antoch and Huskova [I]
and later pursued by others (for a recent survey confer Huskova [7]). Kirch [9] [10]
proposed some permutation procedures to obtain critical values for change-point tests if
the errors are no longer independent.
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All of those papers, however, deal with a posteriori tests, i.e. tests, where we have ob-
served the complete data set already. In many situations sequential or on-line monitoring
tests are much more realistic. In those models data arrive steadily and with each new
observation the question arises whether the model is still capable of explaining the data.
Critical values in this setting are also frequently based on asymptotics. Additionally to
the problems of a-posteriori tests the asymptotics usually assume that the monitoring
goes on for an infinite time horizon. In many situations it is much more realistic to
monitor data only for a finite time horizon (maybe as long or twice as long as the his-
torical data set, on which the preliminary assumptions are based). If the calculation of
the critical values is based on an infinite observation period but in fact it is finite, one
necessarily looses some power.

It is not obvious how best to do bootstrapping in a sequential setting. New data arrive
steadily, so we could use these new observations in the bootstrap and hopefully improve
the estimate of the critical values. From a practical point of view this is computationally
expensive, so one might think of alternatives, which are less expensive and still good
enough. From a theoretical point of view this means that we have new critical values with
each incoming observation, so the question is whether this procedure remains consistent.
The literature on bootstrapping methods for sequential tests is very scarce. Steland [12]
used a bootstrap in sequential testing of the unit-root problem.

In the a posteriori setting permutation tests are often preferable to bootstrap tests if the
underlying error structure is exchangeable, because those tests are exact whereas boot-
strap tests are only asymptotically consistent. In the sequential setting this approach is
not possible because the test statistic is based on more observations than what we have
already observed.

In this paper we concentrate on examining and comparing different bootstrap procedures
for sequential change-point tests. To this end we use the same model as Antoch and
Huskova [I], when first considering permutation tests for change-point analysis but we
use it in a sequential setting. In forthcoming work this will be extended to more difficult
models.

We consider the following mean change problem. Let

X(3) = i) + (i), (1.1)
where {€(7) : ¢ > 1} is a sequence of i.i.d. random variables with

Ee(1) =0, 0 <o?=vare(l) < oo, Ele(1)]” < oo for some v > 2.  (1.2)

We assume that we have observed a historic data set of length m, where no change has
occurred, i.e.

ui) = po, 1<i<m. (13)

Now, we are interested in monitoring the future incoming observations sequentially for
a change in the mean, i.e. we want to test the null hypothesis

Ho : p(i) = po, i >m,
against the alternative

Hj : there exists £* > 0 such that u(i) = po, m <i < m+ k",
but pu(i) = po+d, i >m+k*, d#0.
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The values of up and d are not specified, d = d(m) and k* = k*(m) may depend on m.

Note that this is a special case of the linear model discussed in Horvéth et al. [6]. We
also use their monitoring statistic but with a possibly finite monitoring horizon N(m).
It is based on

C(m,k,y) =T(m,k,7)(X(1),X(2),...,X(m+k))

I
= Z X(Z)—m]z:;X(]) /g(mak/.}/)? (1.4)

m<i<m+k

.
where g(m, k,~) = m!/? (1 + k) ( k >

m m+k

for 0 < v < 1/2. The statistic is then given by

=

Sup F(m’ k77)7
m 1<k<N(m)

Q)

where N(m)/m — oo, N(m)/m — N > 0, or N(m) = oo, as m — oo, and 02, — 02 =

op(1) is a consistent estimator of o and only depends on the historical data set. In this
paper we use the following variance estimator on the historic data set

2

52 =52 (X(1),..., X(m)) = —— > [ X0 - %ZX(]’) | (1.5)

We reject the null hypothesis at

(m) inf{k >1: LT (m,k,v) > c},
T(m) = ™
00, ifﬁf(m,k,7)<c, k=1,2,...,N(m),

where ¢ is chosen in such a way that we control the false alarm rate, i.e. that under the
null hypothesis

lim P(r(m) < 00) =«

m—0o0

for some given level 0 < o < 1. Under the alternative the limit should converge to 1.

The paper is organized as follows. In the next chapter we give the asymptotics based
on which the critical value has been chosen by Horvéth et al. [6] and propose some
alternative methods based on bootstrapping. Theoretical results proving the asymptotic
consistency of the proposed procedures under the null hypothesis as well as alternatives
are also given. In Section [3|a simulation study compares the different bootstrap methods
with the asymptotic method. Finally the proofs can be found in Section

2 Bootstrapping procedures and consistency of the
corresponding tests

Before we discuss some possible bootstrap procedures we first give the asymptotic dis-
tribution for an infinite horizon (Theorem a) below) and an improved version for a
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finite time horizon (Theorem b) below). This second approach can also be viewed
as a pseudo-parametric bootstrap. That means we assume normality and estimate the
variance from the historical data set. This last estimate is a problem for small historical
sample sizes. When we talk about parametric bootstrap in the following, this is the
procedure we mean.

Horvéath et al. [6] propose to calculate the critical values according to the asymptotics
given in a) of the following theorem with N(m) = oc.

Theorem 2.1. Let (1.1) - (1.3) hold, 0 < v < 1/2, and 0, —0 = op(1). Then we have,
as m — oo, under the null hypothesis,
a) if N(m)/m — oo or N(m) = oo,

1
L Dlm k)X, X4 k) 2 sup O
m 1<k<N (m) 0<t<1

where {W(t) : 0 <t < 1} is a standard Wiener process,

b) if N(m)/m — oo or N(m)/m — N for a constant N > 0,

1
— sup T'(m,k,)(X(1),...,X(m+k))
Om 1<k<N(m)

= omax (Y Ewaol (1 B () 4 op)

T acknmm) | \m m > m) \k+m PASD
where {W1(t) : t > 0} is a standard Wiener process, Wa(1) is standard normally
distributed and independent of {Wi(-)}.

Remark 2.1. a) The limit distribution in a) is explicitly only known for v = 0.

b) The distribution of the right hand side of b) is the actual distribution of I'(m, k, )
under the null hypothesis for normal errors with variance 1. Note that it converges
to the same limit as in a) for N(m)/m — oo and it converges to

sup (Wi (t) — tWa(1)]
o<t<n (L+8)(E/(1+1))7

for N(m)/m — N (cf. the proof of Theorem 2.1 in Horvéth et al. [6]).

Remark 2.2. Horvath et al. [6] pointed out that a value of v close to 1/2 has the
shortest detection delay time for early changes, however the probability of a false alarm
(before the change occurred) is higher. If the change occurs well after the monitoring
started, the detection delay time is similar for all values of 7, but a 7 close to 1/2 has a
significant probability of a false alarm well before the change occurred.

The next theorem shows the asymptotic consistency of the tests under alternatives,
where we have chosen the critical values according to Theorem a) or b) above.

Theorem 2.2. Let (1.1) - (1.3)) hold, 0 < v < 1/2, and /md(m) — oco. Note that the
last assumption includes fized as well as local changes. Furthermore let either

a) k*/m = 0(1), if N(m)/m — oo or N(m) = oo, or
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b) k*/m — N with constants 0 < N < N, if N(m)/m — N.

Then we have, as m — 00, supi<r<n(m)l (M, k, 7)(X(1), X(2),...) L, .

Next we discuss some non-parametric bootstrap procedures, which we will compare in
the simulation study in Section |3 It turns out that bootstrap version B.3c is best in
most situations.

For the bootstrap we need that N(m) is finite. However, the bootstrap procedures are
also asymptotically correct for an infinite time horizon if N(m)/m — oco. First we
discuss three possible bootstraps that take different observations into account. Different
possibilities to choose the variance estimator o2, , (V) in the bootstrap descriptions below
will be discussed later. 7

Bootstrap B.1
The first bootstrap uses only the historical data set. Consider the bootstrap statistic

T (m, 1, 7)1, = D(m, L) (X (Urm(1), -, X (UL +m)),

where {Uj (i) : 1 <i<m+ N(m)} are i.i.d. random variables with P(Uy,,(1) = j) =
1/m, j=1,...,m, independent of {X(7):1<i< N(m)}.
av

We choose the critical value c;, )(m) = (V) (m) for a given level a such that

1
Pl | =—r sup I*(mly){, > cM(m) | <a, (2.1)
"\ T1m (V) 1< (m) ’

V) (m) minimal, V = a,b, ¢ denotes one of the variance versions below. Py, denotes
the conditional probability given X (1),..., X (m). In applications one does not calculate
the above conditional probability but instead draws ¢, say t = 1000, random bootstrap
samples and uses the empirical distribution.

This bootstrap has essentially two advantages. First we only have to calculate the critical
values once at the beginning of the observation period. Theoretical results are also easy
to obtain because we do not have to deal with new critical values for each incoming
observation. Another advantage is that we already know that the observations follow
the null hypothesis. The disadvantage is that we have only few observations to base on
a bootstrap for a much longer time series.

Bootstrap B.2

The second bootstrap uses all data available up to this point. This means that the
critical value now depends on the time point. At time m + k consider the bootstrap
statistic

T*(m, 1,7)\2) = T(m, L) (X (Ukn(1)), - -, X (Ug(l + m))),

k,m

where {Uk (i) : 1 <i <m+ N(m)} are i.i.d. random variables with P(Uy,,(1) = j) =
1/ (im+k—1),j=1,...,m+k—1, independent of {X (i) : 1 <i<m+ N(m)}.
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We reject the null hypothesis at a given level « at time m + k if

L(m,k,v)/om > c}(fV) (m), where

i 1 (2) _ .2V)
P | == su ' (m, 1, >c m) | < a, 2.2
& (Uk,m(v) 1<l<]\Pf)( ) ( 7) e (m) 22)

cgv) (m) minimal, V' = a, b, ¢ denotes one of the variance versions below. P,;"m denotes
the conditional probability given X (1),...,X(m + k —1). In applications one uses the
empirical distribution function to calculate the critical value.

This bootstrap is computationally very expensive, since we calculate a new critical value
after each incoming observation. Moreover a small portion of the observations may
already follow the alternative. It has the advantage, that we use as much data as
possible for the bootstrap.

Bootstrap B.3
The third bootstrap is essentially a combination of the above two. The idea is that
only the older bootstrap samples do not represent the current data well enough whereas

the newer ones are still reasonably good. This bootstrap procedure was suggested by
Steland [12].

In Bootstrap B.2 we calculate critical values at time m + k based on the distribution
Py, For Bootstrap B.3 we use two modifications to reduce the computation time
significantly.

First of all we only calculate new critical values after each Lth observation.

Secondly and maybe even more importantly we use a convex combination of the latest M
bootstrap distributions. Thus, in applications we use an empirical distribution function
not only based on the newest samples (which are generated from X (1),..., X(m+k—1))
as in B.2 but also on older samples. This is why we need to generate only a fraction of
the bootstrap samples needed for Bootstrap B.2 in each step. For example for §; = 1/M
below, i.e. equal weights in the convex combination, we only need t; = t/M new samples
each time we update the critical values to get an empirical distribution function based
on t samples. Therefore the procedure is significantly accelerated even if we calculate
new critical values after each new observation (L = 1).

For a theoretical description denote by

*(V
F (@)
=P, ,\# sup I'* (m,l,y)gzn <z
"\ Ok (V) 1<i<n(m) ’

the conditional distribution functions from B.2. Let for j > 1, E ;, =1and G; >0

Zﬂz s by X k=3I, G+ 1L -1,

Then we calculate the critical value c,(f’v) (m) at time k 4+ m as follows:
ﬁ]g};}b (C](€3V) (m)> >1-a, (23)
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c}(g:w) (m) minimal, V' = a, b, ¢ denotes one of the variance versions below.

In simulations we use the convex combinations with equal weights 3; = ﬁ, L=m/5
and M = 5. Thus after monitoring for m observations we have completely replaced the
bootstrap samples. With this parameters this bootstrap is computationally only little
more expensive than Bootstrap B.1 based on the historical data sequence, since we only
replace all ¢t bootstrap samples after m observations. The simulations show that it yields
almost the same results as Bootstrap B.2 but is indeed a lot faster.

Furthermore we give several possibilities on how to deal with the variance in the boot-
strap.

Variance a

In this version we normalize each bootstrap which is based on the first m + k£ — 1
observations with the conditional variance 31%,771(‘1) = ﬁ Z;’:{k_l (X (1) = Xmir_1)>
This is the bootstrap that Lemma yields initially.

Variance b
In this version we use no variance estimator neither for the bootstrap nor the original
statistic. This is equivalent to using the same for both. That means we choose 0, (b) =

Om.-

Variance c
This version uses pivoting with respect to the historical data set, i.e. we also bootstrap
the variance estimator 7,,, hence

Tkm(c) = Om(X (Ugm(1)), -, X (Ugm(m))).

Hall and Wilson [5] suggest that in most situations for a posteriori tests pivoted bootstrap
procedures, i.e. studentized test statistics, hold the level best. In fact the simulations
show that this is also true in this situation.

The next theorem shows the asymptotic consistency of the test based on the above
bootstrap critical values under the null hypothesis as well as under alternatives.

Theorem 2.3. Let (1.1)) — (1.3)) hold, 0 <y < 1/2, 6, — 0 = op(1). Then we have as

m — o0

a) under the null hypothesis,

1 I'(m, k
P|— sup w >1| —a,
Om 1<k<N(m) ¢’ (m)
where j =1,2,3, V =a,b,c.

b) If additionally the assumptions of Theorem are fulfilled and d = d(m) = O(1),
then

1 T'(m,k
P|— sup M >1] —1.
OTm 1<k<N(m) cg )(m)

where j =1,2,3, V =a,b,c.
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Remark 2.3. The assertions of Theorem remain true, if we use an infinite obser-
vation horizon and critical values based on a bootstrap with horizon N(m) fulfilling

N(m)/m — oo. This is important because a computer can obviously not calculate
critical values based on an infinite monitoring horizon.

3 Simulation study

In the previous chapter we have established the asymptotic validity of the bootstrap
tests. The question remains how well the procedures work for small sample sizes.

We will establish the answer to this question in the following simulation study. First
we compare the different bootstrap procedures, then we compare the best bootstrap
procedure with the asymptotic test as well as parametric bootstrap (of Theorem [2.1)).

The goodness of sequential tests can essentially be determined by three criteria:

C.1 The actual level (a-error) of the test should be close to the nominal level.

C.2 The power of the test should be large, preferably close to 1, i.e. the g-error should
be small.

C.3 The run length of the test, i.e. the time after monitoring starts until the null
hypothesis (if at all) is rejected, should be shortly after the change-point.

We visualize these qualities by the following plots:
Size-Power Curves

Size-power curves are plots of the empirical distribution function of the p-values of the
test under the null hypothesis as well as under various alternatives. In the sequential
setting with varying critical values it is the minimum of the p-values for each step, i.e.
the minimum of pg, 1 < k < N(m) < oo, where py, is the p-value of I'(m, k,~) /0, with
respect to the distribution from which we obtain the critical value cg(m).

What we get is a plot that shows the empirical size and power (i.e. the empirical a—errors
resp. 1—((O—errors)) on the y-axis for the chosen level on the z-axis. So, the graph for
the null hypothesis should be close to the diagonal (which is given by the dotted line)
and for the alternatives it should be as steep as possible.

Plot of the Average Run Length

We store the run lengths for nominal test levels 0.01,0.02,...,0.1 based on ¢ runs and
plot the mean of those runs where the test did reject, linearly interpolated. Note that
runs in which the test did not reject the null hypothesis are not used in the calculation.
This can lead to effects where the average run length is longer for a higher level due to
the fact that more runs are rejected. This effect is especially visible if the monitoring
period ends shortly after the change. The horizontal line in the plot indicates where the
change occurred.

It is sometimes argued that the median of the run length is a better criteria than the
average run length. But for the purpose of comparing the different procedures here, the
results are qualitatively very similar. Thus we concentrate on the average run length
which is more frequently used.
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Plot of the estimated density of the run length

For the density estimation we use the standard R procedure which uses a Gaussian kernel,
where the bandwidth is chosen according to Silvermans rule of thumb ([11], p. 48 eq.
(3.31)). The estimation is based on only those simulations where the null hypothesis
was rejected at the 5% level. The vertical line in the plot indicates where the change
occured.

For the simulation study we used the following parameters:

m = 10, 20, 50

e N(m)= Nm with N =1,2,5,10
e k* = 9Ym with ¥ = 0.25,0.5,2,5
e d=05,1,2

standard normally distributed errors and exponentially distributed errors

~ =0,0.25,0.49

Due to limitations of space and similarity of results we will only present a small selection
of plots here, the complete simulation results can be obtained from the author (pdf-File,
215 p., 25 MB).

3.1 Variance estimators for the bootstrap

In this section we compare the different variance estimators a-c for Bootstraps B.1 and
B.2. Bootstrap B.3 is an intermediary of the two as will be seen in the next section.
Because Bootstrap B.2 is computationally quite expensive we will calculate the bootstrap
quantiles based on 500 random bootstrap samples and calculate the empirical size and
power respectively average run length based on 200 runs. All plots are based on the
same underlying error sequences.

Some results for exponential errors, v = 0, and k* = 1/2m are given in Figure The
other results are very similar in view of the behavior concerning the variance estimator
and therefore omitted.

Most importantly the plots show clearly that variance estimator oy, (c) holds the level
best. This is in accordance with a posteriori tests where the studentized version usually
behaves best in this regard (cf. e.g. Hall and Wilson [5]). The empirical power of the
different versions is comparable if one takes the actual level into account. The same
holds true for the average run length. The average run length is in some cases shorter
for variance versions a and b, but this can be explained by the higher false alarm rate.

What also might seem odd at first is the fact that the average run length for small
changes (d = 0.5) is smaller than for more obvious changes (d = 2) for a short monitoring
period. This is explained by the fact that we reject fewer runs for less obvious changes.
For longer monitoring periods (after the change) this phenomenon disappears because
we reject most runs.

The results for Bootstraps B.1 and B.2 are similar. For m = 50 all procedures behave
approximately the same.
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3.2 Different bootstrap procedures

In this section we compare Bootstraps B.1c, B.2c and B.3c. Because Bootstrap B.2
is computationally quite expensive we will calculate the bootstrap quantiles based on
500 random bootstrap samples and calculate the empirical size and power respectively
average run length based on 200 runs. All plots are based on the same underlying error
sequences.

Concerning Bootstrap B.3 we use L = m/5 and M = 5.

Some selected plots can be found in Figure [3.2] The plots for other parameters are
similar with respect to the behavior concerning different bootstrap procedures and are
therefore omitted.

First of all the plots show that the level is approximately equal for all three procedures
and close to the nominal one. However, the power is much better for Bootstrap B.2 and
B.3 than for B.1, this is especially obvious for exponential errors. In fact the size-power
curves for Bootstrap B.3 are surprisingly close to the ones for B.2, even though we only
completely replace the samples after we have observed as many new observations as the
historic length m was. Thus the procedure is computationally sufficiently cheap while it
still has the advantages of Bootstrap B.2.

Concerning the average run length no clear tendency can be found.

As already with the variances the procedures become essentially equivalent for m = 50.

3.3 Comparison of bootstrap and asymptotic methods

In this section we finally compare Bootstrap B.3c (L = m/5, M = 5), which has turned
out to have the best overall behavior, with the parametric bootstrap and the asymptotic
test from Theorem [2.1] Because Bootstrap B.3 is not that computationally expensive we
will now use t = 1000 random bootstrap samples to calculate the critical values and base
the plots on 1000 runs. Again we use the same underlying error sequence for different
parameters.

In Figures [3.3(1) some selected size-power curves and plots of the average run
length can be found.

We would like to point out that for normal errors the parametric bootstrap gives the
actual distribution for the statistic if the variance estimator is correct. Surprisingly
it still does not hold the level for normal errors but in fact has a higher level than the
nominal one for small historical data sets. For exponential errors it is even worse because
the variance estimator for small samples is skewed with a median much smaller than the
mean (which is the variance we are interested in).

Not surprisingly the level of the asymptotic test is much too small for small observation
sequences. For exponential errors the level sometimes is fine, but this is only due to
the fact that the variance estimator is too small. Heuristically the remainder of the
monitoring period can be neglected if the asymptotic test and the parametric bootstrap
become similar, this happens approximately around N = 10.

11
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Figure 3.2: Size-power curves and ARL: k* = 1/2m, v =0

The power of all tests becomes better the longer the monitoring period is (after the
change).

The bootstrap test is the only test that holds the level well in all cases. The power and
average run length are comparable (maybe slightly better for the asymptotic methods)
for all three tests if one takes the actual level of the test into account.

Again the parametric bootstrap and Bootstrap B.3c are approximately equivalent for
m = 50, the asymptotic bootstrap then is approximately equivalent for N > 10.

Some plots of the densities of the run length can be found in Figure
The densities are similar if one takes the different levels into account. We would like to
point out that the false alarm rate before a change occurred, which is not negligible for

12
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Figure 3.4: Density estimates of run length, d = 2

v = 0.25 or even v = 0.49, is smaller for the bootstrap. The difference is most visible

for exponential errors.

3.4 Conclusions

We have seen that the studentized versions of the bootstraps (variance version c¢) hold
the level best. Moreover the bootstraps taking more observations into account have a
better power. Thus taking the computation time into account, the bootstrap with the
best overall performance is Bootstrap B.3c.
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4 Proofs

For a historic data sequence larger than m = 50 all procedures (except the asymptotic
test) become more or less equivalent, thus to save computation time one should either
use the historic Bootstrap B.1c or even the parametric bootstrap. The asymptotic test
should only be applied if one indeed plans to monitor for quite some time (approximately
N(m) = 10m).

In all other cases we recommend to use Bootstrap B.3c with the above parameters
(L =m/5, M =5) because it has the best overall performance and is computationally
reasonably cheap.

4 Proofs

Proof of Theorem It follows immediately from the proof of Theorem 2.1 in
Horvéath et al. [6]. m

The following proof is similar to the proof of Theorem 2.2 in Horvath et al. [6].
Proof of Theorem First note that for £k > k* it holds by Theorem and
Remark 2.7

m+k F om
Cim k)= [ 32 e~ S i) | Jolm,Fom) + dm) (5~ k) /g(m, F,7)
i=m-+1 =1

= 0p(1) + d(m)(k — k%) Jg(m, . ).
Under a) let k = k* +m = O(m) (< N(m) for m large enough), and under b) k =
N(m) = O(m). Then, g(m, k ,7Y)/v/m = O(1), and thus

d(m)( — k) /g(m. k,7) = Vim d(m) (’“ - ’“) it

m- m | g(m,k,v)

which yields the assertion. =

To prove Theorem we first need three auxiliary lemmas. When dealing with boot-
strap procedures of a posteriori tests (or for Bootstrap B.1) it usually suffices to obtain
conditionally the same asymptotical distribution of the bootstrap statistic as for the
original statistic in a P-stochastic sense. This yields the stochastic convergence of the
bootstrap critical values to the asymptotic ones. Here, however, we have a triangular
scheme of critical values and thus need the convergence in a uniform way. This is es-
tablished by the next lemma under the condition that we also have the distributional
convergence uniformly.

Lemma 4.1. Let ¢, c(m) be such that P(Y > ¢) = a respectively P*(Yi(m) > cp(m)) <
a for some 0 < o < 1 (c(m) minimal), where Yi(m) is some statistic and Y is a ran-
dom variable with strictly monotone and continuous distribution function in a compact
neighborhood K of c. Moreover let for all x in K (as m — 00)

sup | Py, (Ye(m) <z) — P(Y < 2)| .. (4.1)
1<k<oco
Then,
sup |cx(m) — | 50 as m — oo. (4.2)
1<k<oco

16



4 Proofs

Proof. Using standard arguments one can conclude that

sup sup ‘P,;m(Yk(m) <z)—P((Y < :L‘)| 0. (4.3)

zeK 1<k<oco
We show that assertion holds true almost surely if we have almost surely, the
P-stochastic result then follows via the subsequence principle. Thus there exists a set
N¢ with P(N®) = 1 such that holds for any w € N¢. We will now prove that
holds for any w € N¢ by contradiction. Therefore we assume the existence of a
subsequence «(-), such that supy |cx(a(m)) — ¢| > € for some € > 0 with ¢ + € € K.
Then, there is a function f with [cf(q(m))(a(m)) — c| > €, hence another subsequence
B(m) with

cf(ﬁ(m))(ﬁ(m)) <c—e¢ or cf(ﬁ(m))(ﬁ(m)) >c+e.
In the first case we have
< up | P ) (Ye(5(m) < ¢ =) = P(Y < e =€)

N

< sup sup ‘Pﬁ,g(m) (Yi(B(m))

z) — P(Y <$)‘ 0.
zeK k

This is a contradiction. The other case is analogous since P,:’m(Yk (m) >c+¢€) > a for
ck(m) > ¢+ € due to the minimality of cx(m). =

To obtain (4.1) we need the next lemma.

Lemma 4.2. Let aj ,,(2),1 < i < m+k—1, be scores satisfying mfkfl :-f{k_l apm(i) =

0 and

1 m+k—1
D SN TIOIE (11
=1
1 m+k—1
mak_1 Z |lagm(i)]” < D < oo, (4.5)
=1

for 2 < v <4 and a constant D > 0. Then, on a rich enough probability space, there
exists a sequence of stochastic processes

l
{gk,m(l) 11> 1} 2 {Z ak,m(Uk,m(i)) L= 1} )
=1

where Uy, (+) is i.i.d. uniformly distributed on {1,...,m+k — 1}, such that for a fized
Wiener process {W(t) : t > 0} and all 0 < p < v we find for each € > 0 a ¢ = c(e) so
that for m > N(e€) it holds

supP | sup —
k>1 (1<l<ool1/“

Proof. The proof is very close to the proof of Theorem 1 of Einmahl and Mason [2]
but much simpler. By the Skorohod embedding (cf. e.g. Hall and Heyde [4], Theorem
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4 Proofs

A.1) we find a Wiener process and stopping times {7j,,(i) : ¢ > 1} ii.d. with mean
1 and E ‘Tka(1)|V/2 < CD, where C is a constant only depending on v, such that for

Eem(l) =W (Zizl Tkm(i)) it holds

l
{gk’,m(l) o/ = 1} 2 {Z ak,m(Uk,m(i)) o1 = 1} .

=1

The Wiener process can be chosen independently of £ and m, because we can use the
same Wiener process to construct the stopping times. Lemma D.1 in Kirch [8] (a gen-
eralization of the Héjek-Rényi inequality) remains true for an infinite maximum and an
infinite sum (continuity arguments), the square-integrability of the martingale sequence
is also not needed because the von Bahr-Esseen inequality remains true for martingales
(cf. von Bahr and Esseen [13]). Thus we get for 2 < p/ <wv

l

Z Tk,m(i) =1

=1

2v/2-10D 1

1

P| sup ——
<1<l<oo 12/n pv/? >1

o}

This yields for some p depending only on €

1
sup P(Agm(p)) <€ for Ay p(p) =4 sup ——
k I1<i<oo 12/

on the other hand we get for 0 < u < p/

1
> Thm(i) 1
=1
1 l
P —|w m(@) | =W
({am. | (o) -wo
< 2ZP ( sup  W(t) > cll/“>

> C} n Ai,m(p)>
1>1 0<t<pl2/#

2/ 1) _ > QM1 p=1)/2
<4;P(W<pl #)>cz M) 4;P<W(1)>cl w1/, )

1 204/ —p)
< 42 exp <—202l ! p_1> < ¢ for ¢ large enough,
I>1

uniformly in k, which yields the assertion. m
The next lemma is needed to get the validity of the bootstrap with variance version c.

Lemma 4.3. Let aym,(i),1 < i < m+k — 1, be scores satisfying the conditions of
Lemmal[4.2. Then we have for all € > 0
1 m
2 .
supP | — a Uem(i) =1 =2 €] — 0,
- (m 3 O )

where Uy, (+) is i.4.d. uniformly distributed on {1,...,m+k —1}.

Proof. The Chebyshev and von Bahr-Esseen inequality (confer e.g. von Bahr and
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4 Proofs

E Y (@} mUkm(i) = 1)

i=1

Esseen [13]) yield (2 < v < 4)

1
p(
m

< 1 1
S /2 /2

m

S U (@) — 1) >

i=1

v/2

2V/2 1 V/Q »
me/z ZEMm Ukm (i) = 1] ( ! /2):0(1)
uniformly in k. m

Proof of Theorem Let ¢ > 0 be the asymptotic critical value to level a (confer
Theorem [2.1] and Remark [2.1p)), i.e

P (Sup0<t<1 |W(t)‘ > c) = q, if N(m) =00 or N(m)/m — oo,

P (sup0<t<N % > c) =a«, if N(m)/m — N,

where the notation is as in Theorem Our goal is to prove that

sgp ‘c,(gjv)(m) - c‘ =op(1) (4.7)
under the null hypothesis and at least

sup |/ (m)| = Op(1) (48)
under alternatives, where j =1,2,3, V =a,b,c.
To this end we first apply Lemma [4.2| with

X(Z)_ m+k 1
\/erk 1Zm+k HX () = Xingk—1)?

where X, 141 = — +k i Zmﬂc 1 X (7). Indeed (@5) is fulfilled almost surely, since the
law of large numbers yields

akm

I

1 m+k—1

P — Z (X (i) = Xmah—1)?
i=1
1 m+k—1
D DU
=1
- 1{k*<k—1}2dm ; (€(?) — €mrr—1)

o(m+k*)(k—1—k*)
+ L an-nyd (m+k—1)2

> 0%+ o(1) P —a.s. uniformly in k, k* > 1
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4 Proofs

and similarly

1 m+k—1 ~
m+k—1 2 X0 = K|
i=1
m+k—1 4.10)
1 o w (
:O<m+k—1 > eli) = @ntrl +yd|>
=1

=0(1) P —a.s. uniformly in k£ > 1

From Lemma |4.2) we can conclude (4.1) P — a.s. for Bootstrap B.2a where

L s T ) (X Ukm(D) -, X Ui (L +m))

Yi(m) = =
( ) Uk,m(a) 1<ISN(m)

and Y is the limit distribution of Theorem a) resp. as in Remark

The proof is analogous to the proof of Theorem 2.1 in Horvath et al. [6]. Note that by
replacing the results of Komlés et al. there by Lemma we get the convergence rates
of Lemma 5.3 in [6] uniformly in k. This gives finally also the distributional convergence
uniformly in k.

By Lemma we get (4.7} under the null hypothesis as well as under alternatives for
V=aand j=1,2,3. Note that (4.1]) implies an equivalent asertion for B, m ().

In order to obtain (|4.7]) respectively (4.8)) for variance versions b, the law of large numbers

yields analogously to (4.9)) and (4.10))

aim(a) _ 1' B {0(1) P —a.s. under Hy,

sup

k Eim(b) O(1) P —a.s. under Hj.

Since cgb) (m) = Ekm(a)/?f\k,m(b)c,(fa)(m) we get (4.7) under the null hypothesis and
(4.8) under alternatives.

The Chebyshev inequality shows that

m . <
sup P* 1 Z XUk (i) = Xmk—1 | ze] =0 Pas.
m P _

=1 <m+k i Em+ 1( () — Xm+k71)2>

Together with Lemma [£.3] this yields

~2
sup P* Jk,m(c)
k1 o

Tk m(a)

1 >€>HO P —a.s.

Assertion (4.1)) remains true for Yi(m)/Zy(m) if sup, P*(|Zx(m) — 1| =€) L, 0. Thus
Lemma yields (4.7)) under the null hypothesis as well as alternatives.

Theorem and (4.7) yield assertion a), Theorem and (4.8) assertion b). m
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