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Abstract

We study a model with an abrupt change in the mean and dependent errors
that form a linear process. Different kinds of statistics are considered, such as
maximum-type statistics (particularly different CUSUM procedures) or sum-type
statistics. Approximations of the critical values for change-point tests are obtained
through permutation methods in the frequency domain. The theoretical results
show that the original test statistics and their corresponding frequency permutation
counterparts follow the same distributional asymptotics. The main step in the proof
is to obtain limit theorems for the corresponding rank statistics and then deduce
the permutation asymptotics conditionally on the given data.

Some simulation studies illustrate that the permutation tests usually behave bet-
ter than the original tests if performance is measured by the α- and β-errors respec-
tively.
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1. Introduction

Recently a number of papers has been published on the use of bootstrapping or permu-
tation methods for obtaining reasonable approximations to the critical values of change-
point tests. This approach was first suggested by Antoch and Hušková [1] and later
pursued by other authors (cf. Hušková [17] for a recent survey). So far, it has mostly
been dealt with independent observations, yet in many situations dependent observa-
tions are much more realistic. Kirch and Steinebach [21] considered change-point tests
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2. Model and Null Asymptotic

for possibly dependent processes under strong invariance. In that situation we were close
enough to the independent case for the usual procedure to work.

Here, we are interested in a variation of the change-point problem with a possible change
in the mean and i.i.d. errors. Since in many situations the independency is too strong an
assumption, Horváth [16] and Antoch et al. [2] investigated the model where the errors
are no longer independent but form a linear process. Kirch [20] examined the use of
a block permutation method to obtain critical values for that model. This particular
bootstrap scheme was used to take account of the dependency. There is, however, one
major drawback: Simulations conducted in Kirch [20] show that the performance of
the block bootstrap depends strongly on a good choice of the block-length. Automatic
procedures are not available. There is only few literature on the optimal choice of the
block-length and only for few situations (confer e.g. Hall et al. [14]), yet even then the
optimal block-length depends on unknown parameters.
This is why we are interested in yet another bootstrap scheme in this paper. We propose
bootstrapping the Fourier coefficients in the frequency domain. This is motivated by the
fact that Fourier coefficients are asymptotically independent in a certain sense.

Several authors have proposed bootstrapping in the frequency domain. Franke and
Härdle [11], e.g., propose bootstrapping kernel spectral density estimates based on re-
sampling from the periodogram of the original data. The idea behind that approach is
that a random vector of the periodograms of finitely many frequencies is approximately
independent and exponentially distributed. Later this approach was also pursued for
different models, e.g. for ratio statistics such as autocorrelations by Dahlhaus and Janas
[9] or in regression models by Hidalgo [15].
In the above papers the estimation problem as a whole was transformed into the fre-
quency domain. As a contrast we backtransform the bootstrapped coefficients and look
at the new sequences – back in the time domain – as new pseudo-time series. Then we
construct the estimator using empirical distribution functions.

The paper is organized as follows: In a first section we describe the model, frequently
used statistics as well as their null asymptotics. Then we explain the details of the
resampling procedure we consider. In Section 4 we state the main result, which shows
that the resampling procedure gives asymptotically correct critical values. Then we
give a short extract of a simulation study in Section 5. To prove the validity of the
procedure we first need some results for the corresponding rank statistic, which we state
and prove in Section 6. In a final section we can use these to derive the asymptotics of
the permutation statistic. We give some auxiliary results about trigonometric functions
in an appendix.

2. Model and Null Asymptotic

We consider the following At-Most-One-Change (AMOC) location model

X(i) = µ + d 1{i>m} + e(i), 1 6 i 6 n, (2.1)

where the errors {e(i), 1 6 i 6 n} are given by the linear process

e(i) =
∑
j>0

wj ε(i− j)

2



2. Model and Null Asymptotic

and m = m(n), d = d(n) may depend on n. We are interested in testing the null
hypothesis of ”no change”

H0 : m = n

against the alternative of a change in the mean

H1 : 1 6 m < n and d 6= 0.

Moreover we assume that the innovations {ε(i) : −∞ < i < ∞} are i.i.d. random
variables with

E ε(i) = 0, 0 < σ2 = E ε(i)2 < ∞, E |ε(i)|4 < ∞. (2.2)

We suppose that the weights {wj : j > 0} satisfy∑
j>0

wj 6= 0,
∑
j>0

√
j |wj | < ∞. (2.3)

In the case where the errors {e(i) : 1 6 i 6 n} are a sequence of i.i.d. random variables
(with mean zero and finite variance) one often uses statistics based on the partial sums
Sk =

∑k
i=1(Xi − X̄n) where X̄n = 1

n

∑n
i=1 Xi.

It turns out that these statistics work also very well in the present setup (confer Antoch
et al. [2] and Horváth [16]).
Typical test statistics are

T (1)
n (q) = max

16k<n

(
1

√
n q( k

n)
|Sk|

)
, T (2)

n (r) =
1
n

n−1∑
k=1

1
r(k/n)

(
1√
n

Sk

)2

,

T (3)
n (ε) = max

εn6k6(1−ε)n

(√
n

k(n− k)
|Sk|

)
,

where q(·) and r(·) are weight functions defined on (0, 1) and ε > 0.
We assume that the weight function q belongs to the class

Q0,1 = {q : q is non-decreasing in a neighborhood of zero, non-increasing in a
neighborhood of one and inf

η6t61−η
q(t) > 0 for all 0 < η < 1/2}.

The following integral plays a crucial role for the convergence of statistics based on a
weight function q

I∗(q, c) =
∫ 1

0

1
t(1− t)

exp
{
−cq2(t)
t(1− t)

}
dt.

For details and further references confer Csörgő and Horváth [7], Chapter 4.
We assume that the weight function r fulfills for all x ∈ (0, 1)

r(x) > 0 and
∫ 1

0

t(1− t)
r(t)

dt < ∞. (2.4)

Details and further references on the sum statistic T
(2)
n (r) can be found in Csörgő and

Horváth [8], Chapter 2.

The following theorem gives the asymptotic distribution under H0 for the above statis-
tics.
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3. The frequency resampling procedure

Theorem 2.1. Assume that (2.1) - (2.3) and H0 holds.

a) If q ∈ Q0,1 and I∗(q, c) < ∞ for some c > 0, then

1
τ̂

T (1)
n (q) D−→ sup

0<t<1

|B(t)|
q(t)

as n →∞.

b) If r fulfills condition (2.4), then

1
τ̂2

T (2)
n (r) D−→

∫ 1

0

B2(t)
r(t)

dt as n →∞.

c) We have for all ε > 0 and x ∈ R

T
(3)
n (ε)
τ̂

D−→ sup
ε6t61−ε

∣∣∣∣∣ 1√
t(1− t)

B(t)

∣∣∣∣∣ as n →∞.

Here τ̂ is an estimator for τ = σ
∣∣∑

s>0 ws

∣∣ with τ̂ − τ = oP (1) and {B(t) : 0 6 t 6 1}
is a Brownian bridge.

Proof. Confer Theorem 2.1 in Antoch et al. [2], where it is assumed
∑

j>0 j |wj | < ∞.
Yet this assumption is only needed to obtain the Beveridge-Nelson decomposition, which
also holds under (2.3), confer Phillips and Solo [24], equation (15) et sqq.

Remark 2.1. A popular choice for the weight function q(·) is q(t) = (t(1− t))γ , 0 6 γ <
1/2. For γ = 1/2 we no longer have distributional convergence but get an extreme-value
behavior. γ close to 0 detects changes in the middle of the observation period better,
whereas γ = 1/2 detects early and late changes more easily. It is also interesting that
the statistics for general q(·) and for γ = 1/2 are asymptotically independent (cf. e.g.
Antoch et al. [2]).
Note that the change-point estimators in (3.2) are closely related to this class of test
statistics.

The above theorem allows us to construct asymptotic tests where we choose the quantiles
of the limit distributions as critical values. However, there are several problems with this
approach. First the limit distributions of T

(1)
n (q) and T

(2)
n (r) are explicitly only known

for q, r ≡ 1. Secondly the convergence can be rather slow (especially for extreme value
statistics). But most importantly the limit distribution is the same no matter what the
underlying dependency structure is. Yet small sample simulations (cf. Kirch [18]) show
that the exact critical values depend strongly on the dependency structure.
This is why we are interested in alternative methods to obtain critical values for the test,
especially the block resampling method, that has been discussed in Kirch [20], and the
frequency resampling method that we discuss in this paper.

3. The frequency resampling procedure

Due to limitations of space we focus our attention in the following to the case where n
is even. From a practical point of view this is the more important case, since then the
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3. The frequency resampling procedure

Fast Fourier Transform is much more effective. Yet the proofs for n odd are analogous,
for details confer Kirch [18], Chapter 4.

In this section we explain the idea behind the resampling procedure in the frequency
domain and give a thorough description of the algorithm.

First Step: Stationarization

First we need to get closer to the actual error sequence which we know forms a linear
process. So we use estimators for the change-point and the mean before and after the
change and can thus estimate the error sequence:

ẽ(i) := (X(i)− µ̂1)1[1, bm](i) + (X(i)− µ̂2)1[ bm+1,n](i), (3.1)

where for some arbitrary 0 6 γ 6 1
2

m̂ = m̂(γ) = min(arg max(|Sk(γ)|, k = 1, . . . , n− 1)),

where Sk(γ) =
(

n

k(n− k)

)γ k∑
i=1

(X(i)− X̄n),

µ̂1 = µ̂1(γ) =
1
m̂

bm∑
i=1

X(i), µ̂2 = µ̂2(γ) =
1

n− m̂

n∑
i= bm+1

X(i),

X̄n =
1
n

n∑
i=1

X(i).

(3.2)

Second Step: Fourier Transform and Resampling of Fourier
Coefficients

Compute the Fourier coefficients of {ẽ(i) : 1 6 i 6 n}:

ω(j) :=
1√
n

n∑
k=1

ẽ(k) exp(−2πijk/n).

It is known that Fourier coefficients of some time series such as linear processes are
– in a certain sense – asymptotically (complex) normally distributed and independent
with mean 0 and variance 2πf(λj); f is the spectral density of e; λj = 2πij/n (for
details confer e.g. Brillinger [5], Theorem 4.4.1, p. 94). Brockwell and Davis [6],
Theorem 10.3.1, give a similar result for the periodograms. This is less general because
it specifically deals with linear processes fulfilling (2.2) and (2.3) but the conditions on
the weights and moments are less stringent. Our proofs are closely related to theirs.
Let g(1) := Re(ω(1)), g(2) := Im(ω(1)), . . . , g(ñ− 1) := Re

(
ω
(

ñ
2

))
, g(ñ) := Im

(
ω
(

ñ
2

))
,

where ñ := n− 2. We bootstrap the centered coefficients g(i)− 1
ñ

∑ñ
j=1 g(j) either with

or without replacement. Here, we focus on the bootstrap without replacement, since it
is the more difficult case. The proof of the validity of the bootstrap with replacement is
very similar, for details confer Kirch [18], Section 4.7.
Since ω(n− j) = ω(j) we set the bootstrap coefficients for j > n/2 in the corresponding
way. The bootstrap coefficient for j = n/2 is set to 0. Note that ω(n) is the mean of the
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3. The frequency resampling procedure

sequence (both before and after bootstrapping). Since all the statistics we use center
the input sequence, the mean is irrelevant, so we set the bootstrap coefficient for j = n
equal to 0.

Remark 3.1. The covariance structure of the original sequence is coded in the variances
of the coefficients. Resampling in the above way will destroy that, but correspond to
a similar sequence with independent errors and variance σ2

∑
w2

s , where ws are the
weights of the given linear process. This is why we still need an estimator for σ2 (

∑
ws)

2

in order to use the critical values of the permutation statistic for the null hypothesis.

Third Step: Backtransformation

Use inverse Fourier transform to obtain a similar sample as the original one:

XR(l) :=
1√
n

n∑
k=1

ωR(k) exp(2πilk/n), (3.3)

where – as described above –

ωR(l) = g(Rl)− ḡ + i (g(Rñ+1−l)− ḡ) , l = 1, . . . ,
ñ

2
,

ḡ = 1
ñ

∑ñ
j=1 g(j). Moreover ωR(n) = 0, ωR(n/2) = 0 (for n even);

ωR(n− l) = ωR(l), l = 1, . . . , ñ
2 , the conjugated complex of ωR(l).

Here, R = (R1, . . . , Rñ) is a random permutation of (1, . . . , ñ).

Now calculate the value of the chosen statistic for the sample XR. This seems to work
in simulations. Our proof, however, only holds true if we just use N := n

α(n) of the n

components of XR where α(n) → ∞, no matter how slowly, and N → ∞. It is also
not important which ones we use, although it is reasonable to use successive ones. For
α(n) = 1 the Noether (and thus the Lindeberg) condition is not fulfilled. For a detailed
discussion we refer to Kirch [18], Chapter 4.8.2.

The permutation statistic is then standardized with the exact variance of the corre-
sponding rank statistic, confer also Remark 4.2, i.e.

2
ñ

ñ∑
l=1

(
g(l)− 1

ñ

ñ∑
k=1

g(l)

)2

.

This is essentially the factor needed to standardize the Fourier coefficients g(·). The
factor 2 is needed because we use each of these coefficients twice (in ωR(·) as well as
ωR(n− ·))

Remark 3.2. It is usually (there are some additional conditions on the weight functions
q and r) also possible to use the uncentered Fourier coefficients or keep the middle term,
for details confer Kirch [18].

Forth Step: Calculation of the Critical Values

Repeat the second and third step t times and calculate the α-quantile of the statistic
based on these t ”realizations”.
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4. Main result: Asymptotics of the Permutation Statistics

We reject the null hypothesis if the value of the statistic for the original sample (here
we have to divide by the asymptotic variance σ2 (

∑
ws)

2 or an appropriate estimate) is
larger than the above α-quantile.

4. Main result: Asymptotics of the Permutation Statistics

The main theorem below states that the critical values obtained by the frequency permu-
tation method as proposed in the previous section are asymptotically correct. Precisely
it states that the quantiles we obtain from the permutation method are asymptotically
the same as the ones corresponding to the distribution of the original statistic under
the null hypothesis. Thus, even if our observations follow an alternative, we get a good
approximation of the critical values corresponding to the null distribution.
We would like to point out that – under alternatives – this is not necessary for the test to
be consistent. In fact under quite general assumptions one can show (cf. e.g Csörgő and
Horváth [8]) that the classical CUSUM statistic, for example, converges stochastically to
infinity with rate |d|m(n−m)/n. On the other hand it is possible to show under some
mild moment conditions that the critical values obtained by the permutation statistic
converge at most logarithmically to infinity, so that the frequency permutation test re-
mains consistent for a much broader class of alternatives than what we consider in this
paper.

For notational reasons choose α(n) such that n
α(n) is an integer.

Some simple calculations (for details cf. Kirch [18], Section 4.3) show that the the
resampled time series (3.3) is equal to (with a different permutation leading to this
representation)

XR(s) =
2
n

n−2∑
l=1

cs(l)

(
n∑

j=1

ẽ(j)cj(Rl)−
1

n− 2

n−2∑
k=1

n∑
j=1

ẽ(j)cj(k)

)
, (4.1)

where R = (R1, . . . , Rn−2) is a random permutation of (1, . . . , n− 2) and

cj = (0, 0, cj(1), . . . , cj(n− 2))T

= (0, 0, cos(2πj/n), sin(−2πj/n), cos(2 · 2πj/n), . . . , sin(−(n/2− 1) · 2πj/n))T ,
(4.2)

j = 1, . . . , n, cj(R) = (0, 0, cj(R1), . . . , cj(Rn−2))T .

In order to prove the validity of the procedure given in Section 3 it thus suffices to
investigate

ZX
n (u,R) =

√
1
N

∑
s6Nu

XR(β(s)), for u =
α(n)

n
,
2α(n)

n
, . . . , 1.

Let ZX
n (0,R) = 0 and ZX

n (t,R) be linearly interpolated between (i − 1)/n and i/n for
i = 1, . . . , n. The function β defines which n

α(n) of the n resampled variables we choose,
e.g. β(s) = s.

Theorem 4.1. Let (2.2) and (2.3) be fulfilled, α(n) → ∞. Let m = bϑnc, 0 < ϑ 6 1,
and d = d(n) bounded. Then

P
(
f [(ZX

n (id,R)− id ZX
n (1,R))/σ̂n] ≤ x

∣∣X(1), . . . , X(n)
) P−→ P (f(B(·)) 6 x)
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4. Main result: Asymptotics of the Permutation Statistics

for all continuous f : C[0, 1] → R and for all x ∈ R. Here

σ̂2
n :=

2
nñ

ñ∑
l=1

 n∑
i=1

ẽ(i)ci(l)−
1
ñ

ñ∑
k=1

n∑
j=1

ẽ(j)cj(k)

2

.

The following corollary states the limit behavior of our statistics of interest.

Corollary 4.1. Under the conditions of Theorem 4.1 the following holds:

a) If q ∈ FC1
0 and

∫ 1
0

1
q2(t)

dt < ∞, then it holds

P
(
T (1f)

n (R, q) 6 x |X(1), . . . , X(n)
)

P−→ P

(
sup

06t61

|B(t)|
q(t)

6 x

)
,

where T (1f)
n (R, q) := max

16k<N

1
q
(

k
N

) ∣∣∣∣ZX
n

(
k

N
,R
)
− k

N
ZX

n (1,R)
∣∣∣∣ .

b) For
∫ 1
0

(t(1−t))s

r(t) dt < ∞ for some 0 6 s < 1, it holds

P
(
T (2f)

n (R) 6 x |X(1), . . . , X(n)
)

P−→ P

(∫ 1

0

B2(t)
r(t)

dt 6 x

)
,

where T (2f)
n (R, r) :=

∫ 1

0

1
r(t)

|ZX
n (t,R)− tZX

n (1,R)|2 dt.

c) For all ε > 0 we get for all x ∈ R

P
(
T (3f)

n (R) 6 x |X(1), . . . , X(n)
)

P−→ P

(
sup

ε6t61−ε

|B(t)|
(t(1− t))1/2

6 x

)
,

where T (3f)
n (R) := sup

ε6t61−ε

√
1

t(1− t)
|ZX

n (t,R)− tZX
n (1,R)|.

Here {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Remark 4.1. For some variations of the above algorithm such as not centering the
Fourier coefficients as well as the proof for a somewhat broader class of alternatives or
estimators (for the change-point, the mean before and the mean after the change) confer
Kirch [18], Chapter 4. The validity of the bootstrap with replacement is also given there.
Furthermore it is shown that the results remain true if the innovation sequence has only
existing moments larger than the second one, yet the assumptions on α(·) need to be
somewhat strengthened.

Remark 4.2. Theorem A.1 yields after some calculations

2
nñ

ñ∑
l=1

(
n∑

j=1

ẽ(j)cj(l)

)2

=
1
ñ

n∑
j=1

ẽ(j)2 − 2
nñ

n/2∑
j=1

ẽ(2j)

2

− 2
nñ

n/2−1∑
j=0

ẽ(2j + 1)

2

.

8



5. Simulations

The proof of Theorem 4.1 shows that the last two terms converge to 0 in a P -stochastic
sense and 1

n3/2

∑
l

∑
j ẽ(j)cj(l) = oP (1). Theorem 3.7 of Phillips and Solo [24] and the

proof of Theorem 4.1 state that 1
ñ

∑n
j=1 ẽ2(j) → σ2

∑
s>0 w2

s almost surely as n → ∞.
Together this shows

2
nñ

ñ∑
l=1

( n∑
i=1

ẽ(i)ci(l)−
1
ñ

ñ∑
k=1

n∑
j=1

ẽ(j)cj(k)
)2 P−→ σ2

∑
s>0

w2
s

under the same assumptions as in Theorem 4.1.
Thus we standardize the permutation statistic asymptotically with σ

√∑
w2

s . On the
other hand the original statistic is asymptotically standardized with τ = σ|

∑
ws|.

5. Simulations

In the previous chapter we have shown that the frequency bootstrap yields asymptot-
ically correct critical values, yet the question remains how well it performs for small
samples. Moreover we are specifically interested in how well it performs for small sam-
ples sizes in comparison to the asymptotic test.

Due to limitation of space and similarity of results we only provide some results for
Tn(q1), q1 ≡ 1. A much more extensive simulation study including tables providing
the critical values, the results for q2(t) = (t(1 − t))1/4 as well as for the other statistics
and double exponentially distributed innovations can be found in Kirch [19], confer also
Section 6.2 of Kirch [18].

In the simulation study we use the model of Section 2, where {e(i) : i > 1} forms
an AR(1) sequence with autoregressive coefficient ρ ∈ {−0.5,−0.3 : 0.3, 0.5, 0.7} and
{ε(j) : −∞ < j < ∞} are i.i.d. N(0, 1), hence τ = 1

1−ρ . Sample size is 80, the
change-point is at 40. Then we use the algorithm as described in Section 3 with 60
respectively 70 bootstrap r.v.´s, i.e. n

α(n) = 60 respectively = 70. Here, we take the first
60 respectively first 70. Moreover we use all 80 r.v.´s, which corresponds to α(n) = 1.
We use the estimators with γ = 0.

Since we are interested in the performance of the procedure developed here rather than
in the performance of some variance estimator, we use the actual variance in the fourth
step for both tests.

The goodness of a test is usually determined by two criteria. First and foremost we want
the test to hold the nominal level (α-error). This can be very wrong in small samples for
tests which are only asymptotically consistent. Secondly the power of the test should be
as large as possible.

To visualize these two qualities for the asymptotic as well as the frequency permutation
test we create size-power curves under the null hypothesis as well as under various
alternatives. Size-power-curves are plots of the empirical distribution function of the p-
values of the statistic Tn(q1) for the null hypothesis respectively given alternatives with
respect to the distribution used to determine the critical values of the test.
What we get is a plot that shows the empirical size and power (i.e. the empirical α–errors
resp. 1−(β–errors)) on the y-axis for the chosen level on the x-axis. So, the graph for
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5. Simulations

(1) ρ = −0.3, N = 80 (2) ρ = 0.3, N = 80

(3) ρ = 0, N = 60 (4) ρ = 0, N = 80

Figure 5.1: SPC-plots for T
(3f)
n (R, q1) for n = 80, m = 40 and different values for ρ and

N

the null hypothesis should be close to the diagonal (which is given by the dotted line)
and for the alternatives it should be as steep as possible.

The curves can be found in Figure 5.1. Note that the solid line gives the result for the
frequency permutation test and the dashed line for the asymptotic test. From bottom to
top lines belong to the null hypothesis (d = 0) and different alternatives (d = 0.5, 1, 2, 4).
The alternatives not visible in the picture have a power of 1. The plots look very similar,
no matter what the value of α respectively N is. This remains true for a different selection
function β. To illustrate this point we give all two plots for ρ = 0 (yet this is true for
every other choice of ρ as well). For a selection of other values of ρ we then only give
the plot where we use all n values. To create the SPC-plots we use 10 000 time series
according to the model (null hypothesis as well as alternatives) and for each of these
1 000 permutations.

The simulations show that the frequency permutation test holds the chosen level usually
better than the asymptotic test. Taking different actual levels into account the size of
both tests is comparable.

Considering the results given in Section 4 we would also like to see how well the frequency
permutation distribution for a given observation sequence actually fits the exact null
distribution. For the performance of the test this is not essential, because the value
of the statistic of an observation sequence is only compared to the quantiles of the
permutation statistic for that same underlying sequence. Still it is interesting to verify
the assertions of Section 4 for small samples.

Therefore we create QQ-plots of the permutation distribution of one specific realization
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6. Asymptotics of the Corresponding Rank Statistics

against the (empirical) distribution of the statistic under H0.

To obtain the empirical distribution function we use 1 000 realizations of H0 respectively
1 000 permutations. Again the plots are very similar for different choices of α(·). The
results can be found in Figure 5.2.

We would also like to mention that the frequency permutation distribution is already
quite stable for different observation sequences. That means we get essentially the same
plot for different observations.

6. Asymptotics of the Corresponding Rank Statistics

The derivation of the permutation asymptotics is based on the corresponding results of
rank asymptotics. In this section we analyze the corresponding frequency rank statistics.
In the proofs we use simple linear rank statistic results of Hájek et al. [13].

The frequency rank statistics are essentially determined by Zx
n (u,R) := Z̃x

n (u,R) −
E Z̃x

n (u,R), where

Z̃x
n (u,R) =

2
√

α(n)
n3/2

ñ∑
l=1

∑
s6 n

α(n)
u

cβ(s)(l)
n∑

j=1

xj,ncj(Rl)

=

√
α(n)

n

∑
s6 n

α(n)
u

xR(β(s))

(6.1)

for u = j α(n)
n and linearly interpolated in between. {xj,n : j = 1, . . . , n, n > 1} are some

scores.

We assume that the scores fulfill the following conditions:

2
nñ

ñ∑
l=1

(
n∑

i=1

xi,nci(l)−
1
ñ

ñ∑
k=1

n∑
j=1

xj,ncj(k)

)2

= 1

1
n

ñ∑
l=1

∣∣∣∣∣ 1√
n

n∑
i=1

xi,nci(l)−
1
ñ

ñ∑
k=1

1√
n

n∑
j=1

xj,ncj(k)

∣∣∣∣∣
4

= o(α(n)).

(6.2)

Theorem 6.1. Under conditions (6.2) and if α(n) →∞,then

{Zx
n (u,R) : 0 6 u 6 1} C[0,1]−→ {W (u) : 0 6 u 6 1},

where {W (u) : 0 6 u 6 1} is a standard Wiener process.

Proof. This follows immediately from Billingsley [4], Theorem 8.1, in regard of Lemmas
6.2 and 6.3 below.

From the above theorem we can now derive the asymptotics for the frequency rank
statistics we are interested in.

11



6. Asymptotics of the Corresponding Rank Statistics

(1) ρ = −0.5, N = 80 (2) ρ = −0.3, N = 80

(3) ρ = 0, N = 60 (4) ρ = 0, N = 70

(5) ρ = 0, N = 80 (6) ρ = 0.1, N = 80

(7) ρ = 0.3, N = 80 (8) ρ = 0.5, N = 80

Figure 5.2: QQ-plots of T
(3)
n (q1) (under H0) against T

(3f)
n (R, q1) for n = 80, m = 40 and

different values for ρ and N

12



6. Asymptotics of the Corresponding Rank Statistics

Corollary 6.1. Let conditions (6.2) be fulfilled and α(n) →∞.

a) If q ∈ FC1
0 and

∫ 1
0

1
q2(t)

dt < ∞, then it holds

T (1f)
n (x, q) := max

16k<N

1
q
(

k
N

) ∣∣∣∣Zx
n

(
k

N
,R
)
− k

N
Zx

n (1,R)
∣∣∣∣ D−→ sup

06t61

|B(t)|
q(t)

.

b) For
∫ 1
0

(t(1−t))κ

r(t) dt < ∞ for some 0 6 κ < 1, it holds

T (2f)
n (x, r) :=

∫ 1

0

1
r(t)

|Zx
n (t,R)− tZx

n (1,R)|2 dt
D−→
∫ 1

0

B2(t)
r(t)

dt.

c) For all ε > 0 we get

T (3f)
n (x) := sup

ε6t61−ε
|Zx

n (t,R)− tZx
n (1,R)| D−→ sup

ε6t61−ε

√
1

t(1− t)
|B(t)|.

Here {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Proof. The result for c) follows immediately from Theorem 6.1, since we can deduce
from the Portmanteau theorem (cf. e.g. Billingsley [4], Theorem 2.1) [or the continuous
mapping theorem]

f(Zx
n (·,R)) D−→ f(W (·)),

for all continuous f : C[0, 1] → R where {W (t) : 0 6 t 6 1} is a Wiener process. In fact
one can deduce from the Portmanteau theorem that this is equivalent to the assertion in
Theorem 6.1. Note that C[0, 1] is provided with the sup-norm. Thus the transformation
in c) is continuous, which gives the assertion.
For the proof of a) note that in the same way we get for any 0 < η < 1

2

max
Nη6k6N−Nη

1
q
(

k
N

) ∣∣∣∣Zx
n

(
k

N
,R
)
− k

N
Zx

n (1,R)
∣∣∣∣ D−→ sup

η6t61−η

|B(t)|
q(t)

, (6.3)

because infη6t61−η q(t) > 0. Furthermore Corollaries 1.2 and 1.3 in Csörgő and Horváth [7]
show limη→0 sup0<t<η,1−η<t<1

|B(t)|
q(t) = 0 almost surely. Similarly an application of the

Markov inequality together with Theorem 3.1 in Móricz et al. [23] and Theorem 1.1 in
Fazekas and Klesov [10] in view of (6.11) give

P

(
max

16k<ηN

1
q
(

k
N

) |Zx
n (k/N,R)| > x

)
= O(1)

1
x4

1
N2

ηN∑
k=1

k

q4
(

k
N

)
= O(1)

1
x4

sup
06t6η

t

q2(t)

∫ η

0

1
q2(t)

dt → 0 as η → 0.

Now standard arguments yield the assertion. Similar arguments allow us to deduce b)
from a). For details confer Kirch [18], Corollary 4.5.1.

We will now derive the convergence of the finite-dimensional distributions as well as
tightness to prove the above convergence in C[0, 1]. Our first lemma states that the
linearly interpolated part of Zx

n (·,R) can be neglected to derive the asymptotics.

13



6. Asymptotics of the Corresponding Rank Statistics

Lemma 6.1. Under conditions (6.2) it holds as n →∞, uniformly in 0 6 u 6 1,

Zx
n (u,R)− Zx

n (bNuc /N,R) = OP

(√
1
N

)
.

Proof. Note that Z̃x
n (u,R)− Z̃x

n (bNuc /N,R) = (Nu−bNuc) 1√
N

xR(β (dNue)), which
is a linear rank statistic. Some calculations yield that under (6.2) it holds

var

 2
n

ñ∑
l=1

cβ(dNue)(l)
n∑

j=1

xj,ncj(Rl)

 = O(1).

For a closed formula of the variance of a linear rank statistic confer Hájek et al. [13],
Theorem 3.3.3. An application of the Markov inequality now yields the assertion, for
details confer Kirch [18], Lemma 4.5.1.

Now we can state the convergence of the finite-dimensional distributions. This is the
only place where we actually need α(n) →∞, otherwise the Noether condition (6.7) and
thus the Lindeberg condition are not fulfilled (which does not necessarily mean that we
do not have asymptotic normality).

Lemma 6.2. For any 0 6 u1 < . . . < uk 6 1, k > 1, it holds under (6.2)

(Zx
n (u1,R), . . . , Zx

n (uk,R)) D−→ (W (u1), . . . ,W (uk)),

if α(n) →∞. Here {W (t) : 0 6 t 6 1} is a Wiener process,

Proof. By the Cramer-Wold device and Lemma 6.1 it suffices to prove for γ1, . . . , γk 6= 0
that

∑k
i=1 γiZ

x
n (bNuic/N,R) D−→

∑k
i=1 γiW (ui) (w.l.o.g. u1 6= 0). Under (6.2) the left

hand side is again a linear rank statistic with (cf. Hájek et al. [13], Theorem 3.3.3)

var

(
k∑

i=1

γiZ
x
n

(
bNuic

N
,R
))

→
k∑

i=1

k∑
j=1

γiγj min(ui, uj) = var

(
k∑

i=1

γiW (ui)

)
,

since Lemma A.1 yields after some calculations

2
nN

ñ∑
l=1

 k∑
i=1

γi

bNuic∑
s=1

cβ(s)(l)

2

→
k∑

i=1

k∑
j=1

γiγj min(ui, uj) (6.4)

and Lemma A.3 gives∣∣∣∣∣∣ 1√
Nn

ñ∑
l=1

k∑
i=1

γi

bNuic∑
s=1

cβ(s)(l)

∣∣∣∣∣∣ = O(1)
log(N)√

N
→ 0 (n →∞). (6.5)

To complete the proof we verify the Lindeberg condition for rank statistics, confer Hájek

et al. [13], problems 2 and 3 in Section 6.1. Let dn(l) :=
√

2
nN

∑k
i=1 γi

∑bNuic
s=1 cβ(s)(l)

and an(l) :=
√

2
n

∑n
j=1 xj,ncj(l). (6.2), (6.4), and (6.5) show that

1
ñ

ñ∑
i=1

(dn(i)− d̄n)2
ñ∑

j=1

(an(j)− ān)2 →
k∑

i=1

k∑
j=1

γiγj min(ui, uj) > 0. (6.6)

14



6. Asymptotics of the Corresponding Rank Statistics

Moreover

max
16l6ñ

(
dn(l)− d̄n

)2 = O

(
1

α(n)

)
→ 0. (6.7)

Thus the Lindeberg condition can be reduced to
1
ñ

∑
|an(i)−ān|>ε

√
α(n)

(an(i)− ān)2 → 0 for any ε > 0.

(6.2) shows that the corresponding Lyapunov-type condition (with the 4th moment) is
fulfilled, which completes the proof.

We finish this section with the proof of the tightness of the process Zx
n (·,R).

Lemma 6.3. Under conditions (6.2) the sequence of processes {Zx
n (u,R) : 0 6 u 6 1}

is tight.

Proof. First Zx
n (t,R) − Zx

n (u,R) = 2
n
√

N

∑ñ
l=1 dn(l) (an(Rl)− ān) is a linear rank

statistic with

dn(l) =
bNtc∑

s=dNue+1

cβ(s)(l) + (Nt− bNtc) cβ(dNte)(l) + (dNue −Nu) cβ(dNue)(l),

an(l) =
n∑

i=1

xi,n ci(l).

Here ān := 1
ñ

∑ñ
l=1 an(l) and an equivalent expression for d̄n. Define

z2d :=
ñ∑

l=1

(
dn(l)− d̄n

)2 =
ñ∑

l=1

d2
n(l)− ñ(d̄n)2 6

ñ∑
l=1

d2
n(l),

z4d :=
ñ∑

l=1

(
dn(l)− d̄n

)4
,

z2a, z4a analogously. To prove tightness it suffices according to Billingsley [4], Theorem
12.3, to show that for some C > 0 and all 0 6 u 6 t 6 1 it holds E[Zx

n (t,R) −
Zx

n (u,R)]4 6 C(t− u)2. Hájek et al. [13], problem 25 in Section 3.3, yields

E[Zx
n (t,R)− Zx

n (u,R)]4

= O

(
1

N2n6
z2
2az

2
2d +

1
N2n5

z4az4d +
1

N2n6
z4az

2
2d +

1
N2n6

z2
2az4d

)
.

(6.8)

By assumption (6.2) we have

z2a = O(n2), z4a = O(n3). (6.9)

Lemma A.3 gives d̄n = O(log N) and anyway d̄n = O(N(t− u)), which together means
n(d̄n)4 = O(nN2(t − u)2 log2(N)) = O(n2N2(t − u)2). Moreover Lemma A.2 shows∑n

l=1 d4
n(l) = O(nN3(t− u)3 + N4(t− u)4) = O(n2N2(t− u)2). This proves

z4d = O(n2N2(t− u)2). (6.10)

Lemma A.1 shows z2d = O(nN(t− u)), which together with (6.8) to (6.10) yields

E[Zx
n (t,R)− Zx

n (u,R)]4 6 C(t− u)2, (6.11)

which gives the assertion.

15



7. Proofs of the Main Results

7. Proofs of the Main Results

In this section we prove Theorem 4.1 respectively Corollary 4.1. We start with two
auxiliary lemmas stating properties of the estimators µ1 = µ1(γ), µ2 = µ2(γ), and
m̂ = m̂(γ), 0 6 γ 6 1/2, as in (3.2).

Lemma 7.1. Let (2.1) - (2.3) hold, then under the null hypothesis, i.e. m = n, d = 0,
as well as local alternatives with m = bϑnc and nd4 = O(1), it holds for r = 1, 2

a) |µi − µ̂j | = oP

( √
n

log n

)
, i, j = 1, 2,

b)
m ∧ m̂

n
|µ1 − µ̂1|r = oP (1),

n− (m ∨ m̂)
n

|µ2 − µ̂2|r1{bm<n} = oP (1),

c)
(m ∧ m̂)3

n2
(µ1 − µ̂1)4 = OP (1),

(n− (m ∨ m̂))3

n2
(µ2 − µ̂2)41{bm<n} = OP (1),

d) (µ2 − µ̂1)4
(m̂−m)3+

n2
= OP (1), (µ1 − µ̂2)4

(m− m̂)3+
n2

1{bm<n} = OP (1),

e)
(m̂−m)+

n
|µ2 − µ̂1|r = oP (1),

(m− m̂)+
n

|µ1 − µ̂2|r1{bm<n} = oP (1),

where a+ = max(a, 0).

Proof. We will only prove the first equality of c) and d), the rest is analogous. For
details confer Kirch [18], Lemma 4.6.1. Note that

µ̂1 − µ1 =
1
m̂

bm∑
j=1

(X(j)− EX(j)) + d
(m̂−m)+

m̂
,

µ̂1 − µ2 =
1
m̂

bm∑
j=1

(X(j)− EX(j))− d
m ∧ m̂

m̂
.

First we prove the assertion for the term 1bm ∑bm
j=1(X(j)−EX(j)) = 1bm ∑bm

j=1 e(j). Then
we have

m̂3

n2

∣∣∣∣∣∣ 1
m̂

bm∑
j=1

e(j)

∣∣∣∣∣∣
4

6
1
n

max
16k6n

∣∣∣∣∣∣ 1

(kn)
1
4

k∑
j=1

e(j)

∣∣∣∣∣∣
4

= OP

(
1
n

)
,

because the Hájek-Renyi inequality for linear processes (cf. e.g. Bai [3], Proposition 1,
in addition to Phillips and Solo [24], equation (15) et sqq.) gives:

P

 max
16k6n

∣∣∣∣∣∣ 1

(kn)
1
4

k∑
j=1

e(j)

∣∣∣∣∣∣ > C

 = O(1)
1

C2n1/2

n∑
k=1

k−
1
2 = O(1)

1
C2

.

For the terms involving d we have

min(m, m̂)3

n2

∣∣∣∣d (m̂−m)+
m̂

∣∣∣∣4 6 |d|4 min
(

m3

n2
,
(m̂−m)3+

n2

)
6 |d|4n min(ϑ, 1− ϑ)3 = O(1)
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and

(m̂−m)3+
n2

∣∣∣d m

m̂

∣∣∣4 6 |d|4 min
(

m3

n2
,
(m̂−m)3+

n2

)
= O(1).

This completes the proof.

Lemma 7.2. Let (2.1) - (2.3) hold, then under alternatives with m = bϑnc, 0 < ϑ < 1,
and d

√
n

log n →∞, d bounded, it holds

a) |µi − µ̂j | = oP

( √
n

log n

)
, i, j = 1, 2,

b) n
1
4 |µj − µ̂j | = OP (1), j = 1, 2,

c) (µj − µ̂j)4
|m− m̂|3

n2
+ |d|4 |m− m̂|3

n2
= OP (1), j = 1, 2,

d)
|m− m̂|

n
|d|r = oP (1), r = 1, 2.

Proof. The Hájek-Renyi inequality for linear processes (cf. e.g. Bai [3], Proposition 1,
in addition to Phillips and Solo [24], equation (15) et sqq.) states (0 6 γ 6 1/2)

P

nγ−1 max
16k6n

1
kγ

∣∣∣∣∣∣
k∑

j=1

(X(j)− EX(j))

∣∣∣∣∣∣ > C

 = O(1)
n2(γ−1)

C2

n∑
k=1

1
k2γ

= O(1)
1

C2
n−1 log n

and an analogous expression for max16k<n
1

(n−k)γ

∑n
j=k+1(X(j) − EX(j)) (the Hájek-

Renyi inequality in this case can be analogous proven, cf. e.g. Kirch [18], Lemma B.1).
This together with equations (3.11) and (3.12) in the proof of Theorem 1.1 in Kokoszka
and Leipus [22] gives now

|d| |m̂−m|
n

= OP

(√
log n

n

)
. (7.1)

Hence it holds bm−m
n = oP (1), because d

√
n

log n →∞. This gives

n

min(m̂, n− m̂)
= OP (1), (7.2)

since nbm =
( bm−m

n + ϑ
)−1 P−→ ϑ−1 < ∞ and an analogous argument for n

n−bm P−→ (1 −

ϑ)−1. As before µ̂1 − µ1 = 1bm ∑bm
j=1(X(j)− EX(j)) + d ( bm−m)+bm . For the second term it

holds because of (7.1) respectively (7.2)

d(m̂−m)+
m̂

= OP

(√
log n

n

)
, (7.3)

Moreover by the Hájek-Renyi inequality

1√
n

bm∑
i=1

(X(i)− EX(i)) 6
1√
n

max
16k<n

k∑
i=1

(X(i)− EX(i)) = OP (1).
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This together with (7.2) and (7.3) yields√
n

log n
|µ̂j − µj | = OP (1), (7.4)

Here the assertion for j = 2 follows in the same way. Note that |µi− µ̂j | 6 |µj − µ̂j |+ d.
Putting together (7.1) and (7.4) we arrive at the assertion.

Lemma 7.3. Let (2.2) and (2.3) be fulfilled, n even. Then it holds

a)
1
n

n∑
j=1

e(j)2 → σ2

(∑
s>0

ws

)2

> 0 a.s.,

b)
1

n3/2

ñ∑
l=1

n∑
j=1

e(j)cj(l) = oP (1),

c)
1
n

ñ∑
l=1

∣∣∣∣∣ 1√
n

n∑
j=1

e(j)cj(l)

∣∣∣∣∣
4

= OP (1),

d)
2
n

n/2∑
j=1

e(2j) = oP (1),
2
n

n/2∑
j=1

e(2j − 1) = oP (1).

Proof. a) follows immediately from Phillips and Solo [24], Theorem 3.7, and d) from
Theorem 3.3, because e(2�) and e(2 � −1) can easily be written as sums of two linear
processes fulfilling (2.2) and (2.3). The proof for b) and c) goes along the lines of the
proof of Theorem 10.3.1 in Brockwell and Davis [6]. We will therefore only sketch the
steps, details can be found in Kirch [18], Theorem 4.6.1. We will now prove b). First
the decomposition given by Brockwell and Davis yields

1
n

ñ∑
l=1

1√
n

n∑
j=1

e(j)cj(l) =
1
n

n∑
j=1

ε(j)

[
1√
n

ñ∑
l=1

cj(l)dn(l)

]
+

1
n

ñ∑
l=1

Yn(l),

where dn(·) are some constants and Yn(·) are centered r.v.´s with, as n →∞,

max
l=1,...,ñ

|dn(l)| = O(1), var Yn(l) = O(1/n) uniformly in l.

An application of the Chebyshev inequality and Remark A.1 yields

1
n

n∑
j=1

ε(j)

[
1√
n

ñ∑
l=1

cj(l)dn(l)

]
= OP

(
n−1/2

)
.

Furthermore an application of the Chebyshev and Cauchy-Schwarz inequalities shows

1
n

ñ∑
l=1

Yn(l) = OP

(
n−1/2

)
,

which completes the proof of b). Concerning c) we get similarly by the decomposition
of Brockwell and Davis [6], proof of Theorem 10.3.1,

1
n

ñ∑
l=1

∣∣∣∣∣∣ 1√
n

n∑
j=1

e(j)cj(l)

∣∣∣∣∣∣
4

= O(1)
1
n

ñ∑
l=1

∣∣∣∣∣∣ 1√
n

n∑
j=1

ε(j)cj(l)

∣∣∣∣∣∣
4

+ O(1)
1
n

ñ∑
l=1

|Yn(l)|4,
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where E |Yn(l)|4 = O(1/n2) uniformly in l. Thus the Markov inequality shows that the
last term is OP (1/n2). Assertion c) follows now by the Markov inequality, since

P

 1
n3

ñ∑
l=1

∣∣∣∣∣
n∑

j=1

ε(j)cj(l)

∣∣∣∣∣
4

> C

 6
1
C

max
16l6ñ

E

∣∣∣∣∣ 1√
n

n∑
j=1

ε(j)cj(l)

∣∣∣∣∣
4

= O(1)
1
C

,

where the last estimate follows e.g. by Stout [25], Theorem 3.7.8.

Now we are ready to prove Theorem 4.1 respectively Corollary 4.1.

Proof. Theorem 4.1 and Corollary 4.1 The idea of the proof is the following: We use
Theorem 6.1 respectively Corollary 6.1 for the scores

xi := ẽ(i)

 2
nñ

ñ∑
l=1

 n∑
i=1

ẽ(i)ci(l)−
1
ñ

ñ∑
k=1

n∑
j=1

ẽ(j)cj(k)

2− 1
2

.

We will verify that these scores fulfill assumptions (6.2) in a P -stochastic sense. The
subsequence principle gives then the assertion. Note that the convergence in C[0, 1]
can be equivalently expressed via a distributional convergence of all real continuous
transformations of the process (confer also the proof of Corollary 6.1).

In view of Remark 4.2 and Lemma 7.3 it suffices to show that

1
n

n∑
i=1

|ẽ(i)− e(i)|2 = oP (1), (7.5)

1
n3/2

ñ∑
l=1

n∑
j=1

(ẽ(j)− e(j))cj(l) = oP (1), (7.6)

1
n

ñ∑
l=1

∣∣∣∣∣ 1√
n

n∑
j=1

cj(l)(ẽ(j)− e(j))

∣∣∣∣∣
4

= OP (1), (7.7)

1
n

n/2∑
j=1

(ẽ(2j)− e(2j)) = oP (1), (7.8)

1
n

n/2∑
j=1

(ẽ(2j − 1)− e(2j − 1)) = oP (1). (7.9)

Concerning (7.5) note that (a + b)2 6 2a2 + 2b2, which gives (a− b)2 > 1
2a2 − b2. This

shows in our situation 1
n

∑n
i=1 |ẽ(i)|2 > 1

2n

∑n
i=1 |e(i)|2 −

1
n

∑n
i=1 |ẽ(i)− e(i)|2.

Instead of (7.6) we will verify

log n√
n

max
j=1,...,n

|ẽ(j)− e(j)| = oP (1), (7.10)

which implies (7.6) because of Lemma A.3. We will first prove (7.5) and (7.7) - (7.10)
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under alternatives with d
√

n
log n →∞. Recall m = bϑnc and d is bounded. It holds

ẽ(i)− e(i)
= (X(i)− µ̂1)1[1, bm](i) + (X(i)− µ̂2)1[ bm+1,n](i)− (X(i)− µ1)1[1,m](i)

− (X(i)− µ2)1[m+1,n](i)

= (µ1 − µ̂1)1[1,m∧bm](i) + (µ2 − µ̂2)1(m∨bm,n](i) + (µ1 − µ̂2)1( bm,m](i)

+ (µ2 − µ̂1)1(m, bm](i).

The triangle inequality together with Lemma 7.2 now gives for r = 1, 2

m ∧ m̂

n
|µ1 − µ̂1|r +

n− (m ∨ m̂)
n

|µ2 − µ̂2|r +
(m− m̂)+

n
|µ1 − µ̂2|r

+
(m̂−m)+

n
|µ2 − µ̂1|r 6 oP (1) +

|m− m̂|
n

|d|r = oP (1).

By Lemma A.2

1
n3

ñ∑
l=1

(µ1 − µ̂1)4

m∧bm∑
j=1

cj(l)

4

= O(1)
(m ∧ m̂)3

n2
(µ1 − µ̂1)4

= O(1)n(µ1 − µ̂1)4 = OP (1).

Analogously we get

1
n3

ñ∑
l=1

(µ2 − µ̂2)4
(

n∑
j=m∨bm cj(l)

)4

= OP (1).

Moreover for m̂ < m 6 n

(µ1 − µ̂2)4
1
n3

ñ∑
l=1

(
m∑

j= bm+1

cj(l)

)4

= O(1) (µ1 − µ̂2)4
(m− m̂)3+n

n3

= O(1) (µ2 − µ̂2)4
|m− m̂|3

n2
+ O(1) |d|4 |m− m̂|3

n2
= OP (1).

Analogously for m < m̂

(µ2 − µ̂1)4
1
n3

ñ∑
l=1

( bm∑
j=m+1

cj(l)

)4

= OP (1).

Under the null hypothesis as well as local alternatives with |d|4n = O(1) analogous ar-
guments in addition to Lemma 7.1 give the assertion. Since we can divide each sequence
into two sub-sequences (possibly one of which is empty), one fulfilling |d|4n = O(1), the
other one |d|

√
n/ log(n) →∞, this completes the proof.

A. Some Properties of Trigonometric Functions

The frequency permutation statistics are based on trigonometric polynomials. In the
proofs for the rank statistic asymptotics we make use of the special structure of trigono-
metric polynomials. We state some results in this appendix.
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Lemma A.1. a) For j = 1, . . . , n it holds

n−2∑
l=1

cj(l)2 =
n− 2

2
.

b) For i, j = 1, . . . , n, i 6= j it holds

n−2∑
l=1

cj(l) ci(l) = −1
2
(1 + (−1)i−j) =

{
0 i− j odd,
−1 i− j even.

Proof. Straightforward calculations give the assertion, for details confer Kirch [18],
Theorem 4.4.1.

Remark A.1. Note that {
√

2
nc♦(l), l = 1, . . . , ñ} forms an ON-System (confer e.g.

Brockwell and Davis [6], page 333).

Lemma A.2. It holds

n−2∑
l=1

cs1(l)cs2(l)cs3(l)cs4(l) =


O(n),

∑4
j=1 δ

(j)
± sj = in, i ∈ Z, δ

(j)
± = ±1

with
∑n

j=1 δ
(j)
± = 0 or

∑n
j=1 δ

(j)
± = 4,

0, s1 + s2 + s3 + s4 odd,

−1, otherwise.

The condition above means that the sum is only of linear order if s4 is determined by a
finite number of combinations of s1, s2, s3.

Proof. Again direct calculations give the assertion, for details confer Kirch [18], Lem-
ma 4.4.1.

Lemma A.3. If k is not a multiple of n, it holds

M∑
j=1

cos(2πkj/n) = O

(
max

(
n

k
,

n

n− k

))

and
M∑

j=1

sin(2πkj/n) = O

(
max

(
n

k
,

n

n− k

))
uniformly in M and anyway 6 M uniformly in k. Note

n∑
k=1

max
(

n

k
,

n

n− k

)
6 2n

n∑
k=1

1
k

= O(n log n),

n/2∑
k=1

min
(
M,

n

k

)
6

n/M∑
k=1

M +
n/2∑

k=n/M+1

n

k
6 n + n

∫ n/2

n/M

1
x

dx = O(n log M).

Proof. An application of equation 1.342 of Gradshteyn and Ryzhik [12] gives the asser-
tion. For details confer Kirch [18], Lemma 4.4.2.
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Prof. Dr. Marie Hušková from Charles University, Prague, whose deep insights in
rank statistics as well as the field of change-point analysis helped solve many problems.
Furthermore it was her who suggested the possibility of bootstrapping in the frequency
domain. Last but not least my thanks go to Prof. Dr. David Mason from the University
of Delaware for pointing out to me that the frequency bootstrap is essentially just another
linear rank statistic problem.

References
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[23] Móricz, F., Serfling, R., and Stout, W. Moment and probability bounds with quasi-
superadditive structure for the maximum partial sum. Ann. Probab., 10:1032–1040,
1982.

[24] Phillips, P.C.B., and Solo, V. Asymptotics for linear processes. Ann. Statist.,
20:971–1001, 1992.

[25] Stout, W.F. Almost Sure Convergence. Academic Press, New York, 1974.

23


	Introduction
	Model and Null Asymptotic
	The frequency resampling procedure
	Main result: Asymptotics of the Permutation Statistics
	Simulations
	Asymptotics of the Corresponding Rank Statistics
	Proofs of the Main Results
	Some Properties of Trigonometric Functions

