
Block Permutation Principles for the
Change Analysis of Dependent Data∗

Claudia Kirch†

2007

Abstract

We study an AMOC-model with an abrupt change in the mean and dependent
errors that form a linear process. Different kinds of statistics are considered, such
as maximum-type statistics (particularly different CUSUM procedures) or sum-type
statistics. Approximations of the critical values for change-point tests are obtained
through permutation methods. The theoretical results show that the original test
statistics and their corresponding block permutation counterparts follow the same
distributional asymptotics. The main step in the proof is to obtain limit theorems
for the corresponding rank statistics and then use laws of large numbers to obtain
the permutation asymptotics conditionally on the given data.

Some simulation studies illustrate that the permutation tests usually behave bet-
ter than the original tests if performance is measured by the α- and β-errors respec-
tively.

Keywords: Permutation principle, change in mean, rank statistic, dependent
observations, linear process

1. Introduction

A series of papers has been published on the use of permutation principles for obtaining
reasonable approximations to the critical values of change-point tests. This approach
was first suggested by Antoch and Hušková [1] and later pursued by other authors (cf.
Hušková [9] for a recent survey). So far, it has mostly been dealt with independent
observations. In many situations dependent observations are much more realistic. Kirch
and Steinebach [12] considered change-point tests for possibly dependent processes under
strong invariance. In that situation we were close enough to the independent case for
the usual procedure to work.

∗This is a preprint of an article published in J. Statist. Plann. Inference,137:2453-2474, 2007, Copyright
2007 by Elsevier.
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1. Introduction

In this paper we examine a block permutation method (to take account of the depen-
dency) for the most commonly used test statistics for an abrupt change in the mean
(AMOC location model). A discussion of the behavior of these test statistics under the
null hypothesis for dependent observations can be found in Antoch et al. [2] as well as
Horváth [8].

We consider the following AMOC location model

X(i) = µ + d 1{i>m∗} + e(i), 1 6 i 6 n, (1.1)

where the errors {e(i), 1 6 i 6 n} are given by the linear process

e(i) =
∑
j>0

wj ε(i− j)

and m∗ = m∗(n), d = d(n) may depend on n. We are interested in testing the null
hypothesis of ”no change”

H0 : m∗ = n

against the alternative of a change in the mean

H1 : 1 6 m∗ < n and d 6= 0.

Moreover we assume that the innovations {ε(i) : −∞ < i < ∞} are i.i.d. random
variables with

E ε(i) = 0, 0 < σ2 = E ε(i)2 < ∞, E |ε(i)|ν < ∞ for some ν > 2. (1.2)

We suppose that the weights {wj : j > 0} satisfy∑
j>0

wj 6= 0,
∑
j>0

√
j |wj | < ∞. (1.3)

In the case where the errors {e(i) : 1 6 i 6 n} are a sequence of i.i.d. random variables
(with mean zero and finite variance) one often uses statistics based on the partial sums
Sm =

∑m
i=1(Xi −Xn) where Xn = 1

n

∑n
i=1 Xi.

It turns out that these statistics work also very well in the present setup (confer Antoch
et al. [2] and Horváth [8]).
Typical test statistics are

T (1)
n = max

16m<n

(√
n

m(n−m)
|Sm|

)
,

T (2)
n (G) = max

G<m6n

1√
G
|Sm − Sm−G| ,

T (3)
n (q) = max

16m<n

(
1√

n q(m
n )

|Sm|
)

,

T (4)
n (r) =

1
n

n−1∑
m=1

1
r(m/n)

(
1√
n

Sm

)2

,

where q(·) and r(·) are weight functions defined on (0, 1) and G < n.
We assume that the weight function q belongs to the class

Q0,1 = {q : q is non-decreasing in a neighborhood of zero, non-increasing in a
neighborhood of one and inf

η6t61−η
q(t) > 0 for all 0 < η < 1/2}.
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1. Introduction

The following integral plays a crucial role for the convergence of statistics based on a
weight function q

I∗(q, c) =
∫ 1

0

1
t(1− t)

exp
{
−cq2(t)
t(1− t)

}
dt.

For details and further references confer Csörgő and Horváth [4], Chapter 4.
We assume that the weight function r fulfills for all x ∈ (0, 1)

r(x) > 0 and
∫ 1

0

t(1− t)
r(t)

dt < ∞. (1.4)

For more details and further references confer Csörgő and Horváth [5], Chapter 2.

The following theorem gives the asymptotic distribution under H0 for the above statis-
tics.

Theorem 1.1. Assume that (1.1) - (1.3) and H0 holds. Let α(x) =
√

2 log x and
β(x) = 2 log x + 1

2 log log x− 1
2 log π.

a) Then we have for all x ∈ R

P

(
α(log n)

T
(1)
n

τ̂
− β(log n) 6 x

)
−→ exp(−2e−x) as n →∞,

where τ̂ − τ = oP ((log log n)−1), τ2 := σ2
(∑

s>0 ws

)2 (> 0).

b) If G = G(n) → ∞, G
n → 0 and G−1n2/ν log n → 0 as n → ∞, then we have for all

x ∈ R

P

(
α(n/G)

T
(2)
n (G)

τ̂
− β(n/G) 6 x

)
−→ exp(−2e−x) as n →∞,

where τ̂ − τ = oP (log(n/G)−1).

c) If q ∈ Q0,1 and I∗(q, c) < ∞ for some c > 0, then

1
τ̂

T (3)
n (q) D−→ sup

0<t<1

|B(t)|
q(t)

as n →∞,

where {B(t) : 0 6 t 6 1} is a Brownian bridge and τ̂ − τ = oP (1).

d) If r fulfills condition (1.4), then

1
τ̂2

T (4)
n (r) D−→

∫ 1

0

B2(t)
r(t)

dt as n →∞,

where {B(t) : 0 6 t 6 1} is a Brownian bridge and τ̂ − τ = oP (1).

Proof. Confer Theorem 2.1 in Antoch et al. [2], there (1.3) is replaced by
∑

j>0 j |wj | <
∞. Yet this assumption is only needed to obtain the Beveridge-Nelson decomposition,
which also holds under (1.3), confer Phillips and Solo [14], equation (15) et sqq.
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1. Introduction

Remark 1.1. Antoch et al. [2], Theorem 2.3 and Remark 3, propose the following
Bartlett estimator:

τ̃2
n(Λ) = R̂(0) + 2

Λ∑
k=1

(
1− k

Λ

)
R̂(k), (1.5)

where

R̂(k) =
1
n

bm−k∑
t=1

(Xt −X bm)(Xt+k −X bm) +
n−k∑

t= bm+1

(Xt −X
∗bm)(Xt+k −X

∗bm)

 ,

m̂ = min{arg max{|Sk| : k = 1, . . . , n}} and X
∗bm = 1

n−bm ∑n
i= bm+1 Xi. Λ should be chosen

such that Λ2/ log(n) → ∞ and n−1Λ2 log Λ = o(log(n)), then the above theorem holds
true with τ̂ = τ̃n(Λ).

Remark 1.2. Csörgő and Horváth [5], Theorem 4.1.2, prove that the asymptotic for the
q-weighted CUSUM statistic remains true for somewhat more general error sequences.
The resampling methods then also hold if the necessary strong laws of large numbers
are fulfilled, i.e. one only has to prove equations (6.1) - (6.5).

The above theorem allows to construct asymptotic tests where the quantiles of the
limit distributions are chosen as critical values. Yet, it is well known that the rate of
convergence of these statistics (especially the extreme value statistics) can be very slow
(cf. Berkes et al. [3]). Furthermore the limit distributions of T

(3)
n (q) and T

(4)
n (r) are

explicitly known only for q, r ≡ 1.
So alternative methods to obtain critical values for the test are of interest. In this article
we study a version of the permutation method by Hušková [9], which is based on blocks
of the observations.

We assume that we split the observation sequence of length n into L sequences of
length K (i.e. n = KL). K and L depend on n and converge to infinity with n. Instead
of permuting the observations X(i), we permute the blocks X(Kl +1), . . . , X(K(l +1)),
l = 0, . . . , L − 1, and compute the statistics using the permuted blocks (there are no
changes in the order of X(·) within the blocks).

The idea is that the block contains enough information about the dependency structure
so that the estimate is close to the null hypothesis.

We assume in the following that L →∞ and K = K(L), n = n(L) = KL, K/L = O(1).

Remark 1.3. It is also possible to look at n = K(L − 1) + K∗, 0 < K∗ 6 K. Then
we still have L blocks altogether, but only L − 1 are of length K and one is of length
smaller or equal to K. The proofs remain the same, yet one always has to take care of
the shorter block, which makes notations much more complicated.

The paper is organized as follows: In Section 2 we give the rank asymptotics of the
statistics of interest. This is needed to obtain the main results of Section 3, which
show the validity of the above approach. Results of a simulation study are presented
in Section 4, while the proofs are given in Sections 5 respectively 6. An appendix
summarizes some results for strong mixing sequences.
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2. Rank Asymptotics

2. Rank Asymptotics

In this section we prove the asymptotics for the corresponding rank statistics. We can
then deduce the validity of the block resampling methods in the next section by choosing
multiples of X(i) as scores and proving that they fulfill almost surely conditions (2.1)
and (2.2).

Let π = (π(1), . . . , π(L)) be a random permutation of (1, . . . , L) chosen with probability
1
L! and an(1), . . . , an(n) scores satisfying

1
L

L−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣∣ 1√
K

K∑
j=k+1

(an(Kl + j)− an)

∣∣∣∣∣∣
ν

6 D1 (2.1)

for some ν > 2 and

τ2
n(a) :=

1
L

L−1∑
l=0

[
1√
K

K∑
k=1

(an(Kl + k)− an)

]2

> D2, (2.2)

where an := 1
n

∑n
i=1 an(i) and D1, D2 > 0 are some constants. The rank statistics of our

interest are based on partial sums

Sa,π
L,K(l, k) :=

l−1∑
i=1

K∑
j=1

(an[K(π(i)− 1) + j]− an) +
k∑

j=1

(an[K(π(l)− 1) + j]− an).

Precisely we are interested in:

T
(1)
L,K(π,a) := max

26l6L−1
max

16k6K

√
LK

(K(l − 1) + k)(LK −K(l − 1)− k)

∣∣∣Sa,π
L,K(l, k)

∣∣∣ ,
T

(2)
L,K(G, π,a) :=

1√
G

max
16l6L,16k6K
K(l−1)+k>G

∣∣∣Sa,π
L,K(l, k)− Sa,π

L,K(lG, kG)
∣∣∣ ,

T
(3)
L,K(q, π,a) := max

16l6L,16k6K
(l,k) 6=(L,K)

1
√

KL q
(

K(l−1)+k
KL

) ∣∣∣Sa,π
L,K(l, k)

∣∣∣ ,
T

(4)
L,K(r, π,a) :=

1
(KL)2

∑
16l6L,16k6K

(l,k) 6=(L,K)

1

r
(

K(l−1)+k
KL

) (Sa,π
L,K(l, k)

)2
,

where K(lG − 1) + kG = K(l − 1) + k −G, i.e. lG − 1 = bK(l−1)+k−G
K c,

kG = (K(l − 1) + k −G) mod K.

The following theorem is the main tool to derive the validity of the block permutation
method, yet it might also be of independent interest.

Theorem 2.1. Let π = (π(1), . . . , π(L)) be a random permutation of (1, . . . , L) as above.
Moreover let an(1), . . . , an(n) be scores satisfying (2.1) and (2.2). α(x), β(x) are as in
Theorem 1.1.
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2. Rank Asymptotics

a) If K = O ((log n)γ) for some γ > 0, we have for all x ∈ R

P

(
α(log n)

T
(1)
L,K(π,a)

τn(a)
− β(log n) 6 x

)
→ exp(−2e−x) as L →∞.

b) If, as L →∞, G = G(n) →∞, G/n → 0, and

G−1L−2µn log(n/G) = o(1) for some 0 6 µ < min
(

κ− 2
2κ

,
1
4

)
, (2.3)

then we have for all x ∈ R

P

(
α(n/G)

T
(2)
L,K(G, π,a)

τn(a)
− β(n/G) 6 x

)
→ exp(−2e−x) as L →∞.

c) If q ∈ Q0,1, I∗(q, c) < ∞ for some c > 0, and as L →∞

1
Lq2

(
1

KL

) → 0,
1

Lq2
(
1− 1

KL

) → 0, (2.4)

then

T
(3)
L,K(q, π,a)

τn(a)
D−→ sup

0<t<1

|B(t)|
q(t)

as L →∞,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

d) If r fulfills condition (1.4) and as L →∞

1
L2K

K∑
k=1

1
r
(

k
KL

) → 0,
1

L2K

K−1∑
k=1

1
r
(
1− k

KL

) → 0, (2.5)

then

T
(4)
L,K(r, π,a)

τ2
n(a)

D−→
∫ 1

0

B2(t)
r(t)

dt,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Remark 2.1. Concerning the weighted CUSUM-statistic T̃
(1)
L,K(π,a) with the maximum

over the complete range 1 6 K(l − 1) + k < n (instead of K 6 K(l − 1) + k 6 n−K),
the assertion remains true, if

max
16k6K

∣∣∣∣∣∣ 1√
k

k∑
j=1

(an(K(π(1)− 1) + j)− an)

∣∣∣∣∣∣ = oP

(√
log log n

)

resp. max
16k6K

∣∣∣∣∣∣ 1√
k

K∑
j=K−k+1

(an(K(π(1)− 1) + j)− an)

∣∣∣∣∣∣ = oP

(√
log log n

)
.
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3. Main Results: Block Permutation Method

3. Main Results: Block Permutation Method

In this section we prove that the block permutation method gives asymptotically correct
critical values. Precisely we show that the quantiles from the permutation statistics given
our observed data approximate the critical values corresponding to the null distribution.
This holds not only when our observations follow the null hypothesis but even when they
follow an alternative.
Main tool in the proof are the rank asymptotics developed in the previous section.
Furthermore we need strong laws of large numbers for the blocks and even for the
maximum of partial sums to prove that the conditions on the scores from the previous
section are almost surely fulfilled. Such laws hold e.g. under (A) below.

Let π = (π(1), . . . , π(L)) be a random permutation of (1, . . . , L) chosen with probability
1
L! independent of X(·). Then the permutation statistics T

(1)
L,K(π, X), T

(2)
L,K(G, π, X),

T
(3)
L,K(q, π, X) respectively T

(4)
L,K(r, π, X) are given by T

(1)
L,K(π,a), . . ., where the scores

an(i) are replaced by X(i).

For the permutation result to hold true we standardize using the variance of the block
rank statistic. Lemma 3.1 shows that this variance converges in probability to τ2 :=
σ2 (

∑
wj)2 under H0, if we replace the scores by the observations. The convergence is

even sufficiently fast for Theorem 1.1 under suitable conditions. That way we obtain the
following estimator (τ̂LK > 0)

τ̂2
LK :=

1
KL

L−1∑
l=0

[
K∑

k=1

(X(Kl + k)−Xn)

]2

. (3.1)

Note that it does not depend on the permutations, thus the outcome of the permutation
test is in fact independent of the actual value of that estimator. The estimator in Remark
1.1 has in general a different asymptotic behavior under alternatives and can thus not
be used for the block permutation statistics.

Lemma 3.1. Under (1.1) - (1.3) and H0

1
KL

L−1∑
l=0

[
K∑

k=1

(X(Kl + k)−Xn)

]2

=σ2

∑
j>0

wj

2

+ OP

(√
1
K

+

√
1
L

+
log log n

L
+ n

−µ−2
µ

)
,

where Xn = 1
n

∑n
i=1 X(i) and µ < max(ν, 4) with E |X(i)|ν < ∞, i = 1, 2, . . ..

Now we prove that the above statistics conditioned on the observations have the same
asymptotic behavior as the statistics under the null hypothesis (cf. Theorem 1.1). It
does not matter whether our observations follow the null hypothesis or an alternative.
This is true under the following assumption on the error sequence {e(i) : i > 1} for
certain δ,∆.

(A) Let {Zi,n : 1 6 i 6 n, n > 1} be a strictly stationary sequence with EZi,n = 0,
i ∈ Z. Assume there are δ,∆ > 0 with

E |Zi,n|2+δ+∆ 6 D1 for all 1 6 i 6 n, n ∈ N

7



3. Main Results: Block Permutation Method

and there is a sequence α(k) with αn(k) 6 α(k), k ∈ N, and

∞∑
k=0

(k + 1)δ/2α(k)∆/(2+δ+∆) 6 D2, (3.2)

where αn is the corresponding strong mixing coefficient, i.e.

αn(k) = sup
A,B

|P (A ∩B)− P (A)P (B)| ,

where A and B vary over the σ-fields A(Z0,n, Z−1,n, . . .) respectively
A(Zk,n, Zk+1,n, . . .).

Under this assumption we get moment inequalities, which in turn yield strong laws of
large numbers even for triangular arrays (cf. the appendix). This is why we introduce
α̃(·).

Corollary 4 in Withers [17] gives conditions under which linear sequences are strong
mixing and even provides the mixing coefficients. This can be used to check the above
condition. Causal ARMA sequences with appropriate error sequences, for example, fulfill
it for any δ,∆, if the (2 + δ + ∆)-moment of the innovations exists.

Now we state our main theorem which shows that the block permutation method works
in our setting.

Theorem 3.1. Assume that {X(i) : 1 6 i 6 n} fulfills (1.1) - (1.3) with ν > 4.
Let 0 < δ̃ < (ν − 4)/2 and let the sequence {e(i) : i > 1} fulfill assumption (A) for
some δ(j),∆(j), j = 1, 2, with 2 + 2δ̃ < δ(1) < ν − 2, ∆(1) := ν − 2 − δ(1) respectively
0 < δ(2) < 2+δ(1)

2+δ̃
− 2 and ∆(2) := 2+δ(1)

2+δ̃
− 2− δ(2).

Under the alternative let either

(i) K(2+δ̃)/2|d|2+δ̃ min(m∗

n , n−m∗

n ) = O(1) and d2K
L = o(1) or

(ii) min(m∗

n , n−m∗

n ) > ε > 0 (no restriction on d = dn necessary).

Let α(x), β(x) be as in Theorem 1.1 and K/L = O(1). If K is bounded, we also need
var
(∑K

k=1 e(k)
)

> c > 0 as L →∞. The estimator τ̂2
LK is as in (3.1).

a) If K = O((log n)γ) for some γ > 0, then we have for all x ∈ R as L →∞

P

(
α(log n)

T
(1)
L,K(π, X)

τ̂LK
− β(log n) 6 x

∣∣∣X1, . . . , Xn

)
→ exp(−2e−x) a.s.

b) If G = G(n) →∞, G/n → 0, and (2.3), then we have for all x ∈ R as L →∞

P

(
α(n/G)

T
(2)
L,K(G, π, X)

τ̂LK
− β(n/G) 6 x

∣∣∣X1, . . . , Xn

)
→ exp(−2e−x) a.s.
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4. Simulations

c) If q ∈ Q0,1, I∗(q, c) < ∞ for some c > 0 and (2.4), then we have for all x ∈ R as
L →∞

P

(
T

(3)
L,K(q, π, X)

τ̂LK
6 x

∣∣∣X1, . . . , Xn

)
→ P

(
sup

0<t<1

|B(t)|
q(t)

6 x

)
a.s.,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

d) If r fulfills conditions (1.4) and (2.5), then we have for all x ∈ R as L →∞

P

(
T

(4)
L,K(r, π, X)

τ̂2
LK

6 x
∣∣∣X1, . . . , Xn

)
→ P

(∫ 1

0

B2(t)
r(t)

dt 6 x

)
a.s.,

where {B(t) : 0 6 t 6 1} denotes a Brownian bridge.

Remark 3.1. If 2 < ν 6 4 one gets the above results in a P -stochastic sense instead of
almost surely. We then need 0 < δ̃ < ν−2 and (3.2) for δ̃ < δ(1) < ν−2, ∆(1) = ν−2−δ(1)

and δ(2) > 2 + 2δ̃, ∆(2) > 0. For details confer Kirch [10], Remark 3.5.4.

Remark 3.2. Under the above conditions T̃
(1)
n also has the correct asymptotic behavior,

if we take the maximum over the whole range 1 6 K(l− 1) + k < n. The reason is that
the conditions in Remark 2.1 are fulfilled a.s. for logarithmic K. For details confer Kirch
[10], Remark 3.5.5 b).

Remark 3.3. It is also possible to use a moving blocks bootstrap with replacement.
A block-length of K then gives (n − K) different blocks. The first K and the last K
observations, however, are underrepresented in the bootstrap sample leading to some
bias. This is why Politis and Romano [15] proposed a circular procedure, where a
circular periodic extension of the data sequence is used. This has the advantage that
the bootstrap is automatically centered around the sample mean. Then we have the
following blocks {(X(l + 1), . . . , X(l + K)), l = 0, . . . , n − 1}, X(i) = X(i− n), i > n.
The proof uses the same methods, for details confer Kirch [10], Section 3.6.

4. Simulations

The purpose of this simulation study is to illustrate how well the asymptotic test as well
as the block permutation test work for small sample sizes n.

Due to limitation of space we only provide a small part of the results for Tn(q1), q1 ≡
1. The complete results including Tables providing the critical values, the results for
q2(t) = (t(1 − t))1/4 as well as for the other three statistics can be found in Kirch [11],
confer also Section 6.2 of Kirch [10]. There, one also finds a discussion of the variance
estimator τ̂2

LK introduced in this paper.

The simulations show that the results for the statistics except for the MOSUM-statistic
T (2)(G) are very similar. The permutation statistic does behave better than the asymp-
totic method for an appropriately chosen block-length K.
However, the asymptotic method does perform better with statistic T (2)(G). The per-
mutational method is not very well suited here. The reason is that we are looking at
a generally very small (e.g. G = 0.05 n or G = 0.1 n) window of data. So K has to
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4. Simulations

be small compared to G, otherwise the maximum is taken from the same numbers for
many different permutations. For larger n and larger G the permutation method behaves
somewhat better, but it is still not as good as the asymptotic method, which is working
fairly well. Only in the case of i.i.d. error sequences, where we can choose K = 1, the
above problem does not occur and the permutation method actually works comparably
well, maybe even somewhat better than the asymptotic one.

As indicated in Remark 1.1 we use the Bartlett estimator (1.5) in the asymptotic case.
We choose Λ = 0.1 n, because it is the best choice according to the simulation study
conducted by Antoch et al. [2].
Yet for the permutation method we need to use estimator (3.1) in order to have the
correct asymptotic behavior given the observations. Since it is invariant under permuta-
tions, the original as well as permutation statistic are divided by the same value so that
the actual value is irrelevant. This is an advantage, because the performance of the test
does not depend on the performance of the estimator.

In the simulation study we use the model of Section 1, where {e(i) : i > 1} forms
an AR(1) sequence with autoregressive coefficient ρ ∈ {−0.5,−0.3 : 0.3, 0.5, 0.7} and
{ε(j) : −∞ < j < ∞} are i.i.d. N(0, 1), hence τ = 1

1−ρ . Sample sizes are 80, 120, 210,
the change-points under the alternative are at n

4 , n
2 , 3

4n, we choose the block-length K

approximately as 1, log n
2 , log n, (log n)2

2 and d ∈ {0.25, 0.5, 1, 2, 4}.

A simulation of the distribution of the statistic under the null hypothesis shows that the
quantiles depend strongly on the correlation ρ between the observations.

Next we simulate the quantiles of the block permutation statistic given an observation
sequence. The observations for different choices of parameters are based on the same
underlying error sequence. We also use the same 10 000 permutations to calculate the
permutation statistic.
The results show that the quantiles also depend on the correlation ρ.
Under positive correlation they are quite stable for different alternatives. However under
negative correlation the quantiles get smaller, the more obvious the change. As we will
see later, this phenomenon contributes to a better power of the test. For greater n they
clearly stabilize.

There is a good match of the quantiles under the null hypothesis and the permutation
quantiles for an appropriately chosen value of K. For stronger correlated errors the
match is better the longer the block-length K is. This is not very surprising, since in
this case the dependency structure is much better preserved. In the independent case,
we have a better match for a shorter block-length.

To get a better impression how well the block permutation distribution of one specific
realization matches the distribution of the statistic under H0 we create QQ-plots.

1) Exact distribution: Determine the empirical distribution function of the statistic
(under H0) based on 10 000 samples of length n.

2) Simulate observations: Simulate one specific realization of the model for particular
parameters of H0 or H1.

10



4. Simulations

3) Block permutation distribution: Determine the empirical distribution function of the
block permutation statistic based on 10 000 permutations given the realization from
the previous step.

4) Draw a QQ-plot of the null distribution from step 1) against the permutation distri-
butions from step 3).

Figures 4.1(i) to 4.1(ii) show some typical results.
For strongly correlated errors we get best results for large values of K. But the closer to
independence the errors are, the better the plots become for small K. For independent
errors the plot for K = 1 is as good as the one for K = 2 or K = 4.

For K = 10 and n = 80 the greatest simulated values show some kind of ”step behavior”,
i.e. many different permutations give the same value of the permutation statistic. This
is due to the fact that there are only 8 blocks to permute. So if there is one block that
gives (e.g. if put on the first place) the ”maximally” obtained value, there is a good
chance that several permutations will put this block at the same place. However, this
phenomenon disappears for greater n (cf. e.g. Figures 4.1(ii), which gives the QQ-Plots
for n = 210 and K = 15). Even for small n, this phenomenon does not seem to influence
the performance of the test, as the size-power-curves will show. The test behaves very
well with large values of K under H0 as well as H1. Apparently the number of such
”outliers” is too small to influence the quantiles.

The plots displayed below have a change at n/2, but we get essentially the same picture
for different choices of m∗. Moreover the distribution seems to be independent of d (i.e.
the mean difference before and after the change) for positively correlated observations.
There is again only the exception of K = 10, but fortunately the values become smaller
if there is a more obvious change. This only means that we are more likely to reject the
null hypothesis under alternatives, which improves the power of the test. For negatively
correlated observations the values get also smaller for more obvious changes.

The permutation test rejects the null hypothesis if the value of the statistic Tn(q1) of
an observation sequence is greater than the (1 − α)-quantile of the block permutation
statistic given the same sequence of observations. To get a better idea of how well the
test performs we create size-power-curves of both methods under the null hypothesis
and under various alternatives. Size-power-curves are plots of the empirical distribution
function of the p-values of the statistic Tn(q1) for the null hypothesis respectively given
alternatives with respect to the distribution used to determine the critical values of the
test.
What we get is a plot that shows the actual α–errors resp. 1−(β–errors) on the y-axis
for the chosen quantiles on the x-axis. So, the graph for the null hypothesis should be
close to the diagonal (which is given by the dotted line) and for the alternatives should
be as steep as possible.
The results are presented in Figure 4.2. The asymptotic method does not perform too
well, except in the case of ρ = −0.5. The α–errors in all other cases are too high, e.g.
for ρ = 0.5 we even have an actual α–error of 20% for a nominal one of 10%.

For the permutation method it is apparently very important to choose an appropriate
K. For an independent error-sequence the α–error is good for all choices of K, however,
the β–errors increase (i.e. the y-values decrease under alternatives) somewhat for higher

11



4. Simulations

(1) ρ = −0.5, K = 10 (2) ρ = −0.1, K = 2

(3) ρ = −0.1, K = 4 (4) ρ = −0.1, K = 10

(5) ρ = 0.5, K = 1 (6) ρ = 0.5, K = 2

(7) ρ = 0.5, K = 4 (8) ρ = 0.5, K = 10

Figure 4.1(i): QQ-Plots of T
(3)
n (q1)/τ̂LK (under H0) against T

(3)
L,K(q1,π, X)/τ̂LK for n =

80, m∗ = 40 and different values for ρ and K

12



5. Proofs of Section 2

(9) ρ = 0.5, K = 5 (10) ρ = 0.5, K = 15

Figure 4.1(ii): QQ-Plots of T
(3)
n (q1)/τ̂LK (under H0) against T

(3)
L,K(q1,π, X)/τ̂LK for n =

210, m∗ = 105 and different values for ρ and K

K. The best choice here would indeed be K = 1. On the other hand a choice of K = 10
is best under strong dependence.

The figures also show that the power of the test is better for negatively correlated error
sequences. This is due to the fact that the permutation quantiles slightly decrease for
greater mean differences.

The more dependent we suspect the data to be the greater we should choose K, since
a choice of too large a K does not negatively influence the α–errors. It does, however,
increase the β–errors but only slightly. This also means that – if in doubt – it is always
better to choose a larger K.

A comparison of both methods (for an appropriately chosen K) yields that the α–errors
of the permutation method are always better than those of the asymptotic method (with
the single exception of ρ = −0.5). Concerning the β–errors we realize that – depending
on the data – they are comparable (if taken into account that a larger α-error goes
usually along with a smaller β-error) for both methods.

5. Proofs of Section 2

Throughout the proofs we use the notation an � bn for an = O(bn).

Before we prove Theorem 2.1 we need two lemmas that deal with the increments of the
rank statistics respectively Brownian bridges.

Lemma 5.1. Let πL = (π(1), . . . , π(L)) be a random permutation of (1, . . . , L) chosen
with probability 1

L! . Moreover let an(1), . . . , an(n) be scores satisfying (2.1). Then it
holds for all µ < min

(
ν−2
2ν , 1

4

)
max

16l6L−1
16k6K

(
l(L− l)

L

)µ L√
l(L− l)

∣∣∣∣∣∣ 1√
LK

K∑
j=k+1

(an[K(π(l)− 1) + j]− an)

∣∣∣∣∣∣ = OP (1).
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5. Proofs of Section 2

(11) ρ = −0.5, K = 10 (12) ρ = −0.3, K = 2

(13) ρ = −0.3, K = 4 (14) ρ = −0.3, K = 10

(15) ρ = 0.5, K = 4 (16) ρ = 0.5, K = 10

(17) ρ = 0, K = 1 (18) ρ = 0, K = 10

Figure 4.2: Size-power-curves of T
(3)
n (q1)/τ̃n(Λ, X) with respect to the asymptotic dis-

tribution and of T
(3)
L,K(q1,π, X)/τ̂LK with respect to the permutation distri-

bution for n = 80, m∗ = 40 and different values for ρ and K
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5. Proofs of Section 2

Proof. For every ε > 0 we find a C big enough such that

P

 max
16l6L−1

max
16k6K

(
L

l(L− l)

)1/2−µ
∣∣∣∣∣∣ 1√

K

K∑
j=k+1

(an[K(π(l)− 1) + j]− an)

∣∣∣∣∣∣ > C


6

L−1∑
l=1

P

 max
16k6K

(
L

l(L− l)

)1/2−µ
∣∣∣∣∣∣ 1√

K

K∑
j=k+1

(an[K(π(l)− 1) + j]− an)

∣∣∣∣∣∣ > C


6

L−1∑
l=1

1
Cν

(
L

l(L− l)

)(1/2−µ)ν

E

 max
16k6K

∣∣∣∣∣∣ 1√
K

K∑
j=k+1

(an[K(π(l)− 1) + j]− an)

∣∣∣∣∣∣
ν

6 ε.

Note that (1/2− µ)ν > 1 and that for every s > 1 we have

L−1∑
l=1

(
L

l(L− l)

)s

6 2
dL/2e∑
l=1

(
L

l(L− l)

)s

6 2Ls

∫ L/2

1
(x(L− x))−s dx + O(1)

6 2s+1

∫ L/2

1
x−s dx + O(1) = O(1).

The next lemma corresponds to the one above dealing with the increments of Brownian
bridges instead of the increments of rank statistics. It is based on results of Csörgő and
Révész [6].

Lemma 5.2. Let {B(t) : 0 6 t 6 1} be a Brownian bridge. Then it holds:

a)

max
16l6L
16k6K

√
L

∣∣∣∣B( l

L

)
−B

(
K(l − 1) + k

KL

)∣∣∣∣ = O
(√

log L
)

a.s.

b)

max
(log L)s6l6L−(log L)s

16k6K

L√
l(L− l)

∣∣∣∣B( l

L

)
−B

(
K(l − 1) + k

KL

)∣∣∣∣ = O((log L)(1−s)/2) a.s.,

where s > 0.

c)

max
16l<L
16k6K

L√
l(L− l)

∣∣∣∣B( l

L

)
−B

(
K(l − 1) + k

KL

)∣∣∣∣ = OP (1).

Proof. a) follows immediately from Theorem 1.4.1 (p. 42) in Csörgő and Révész [6],
and implies b).
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5. Proofs of Section 2

Note that b) implies c) for log L 6 l 6 L− log L.
It holds{√

L

∣∣∣∣B( l

L

)
−B

(
K(l − 1) + k

KL

)∣∣∣∣ : 1 6 l 6 L, 1 6 k 6 K

}
D=
{∣∣∣∣W (l)−W

(
l − K − k

K

)
− K − k

LK
W (L)

∣∣∣∣ : 1 6 l 6 L, 1 6 k 6 K

}
,

where {W (t) : t > 0} is a Wiener process. The law of iterated logarithm gives the
assertion for the term (K−k)/(LK)W (L) so that it suffices to investigate the maximum
of |W (l) − W (l − (K − k)/K)|. The assertion for l = 1 also follows immediately. For
2 6 l < log L consider lj := max(2, 2−j log L), then [2, log L) =

∑ML
j=0[lj+1, lj), where

ML =
⌈

log log L
log 2

⌉
− 2.

Theorem 1.2.1 (p. 30) of Csörgő, Révész [6] gives now

max
06j6ML

max
lj+16l<lj

max
16k6K

√
L

l(L− l)

∣∣∣∣W (l)−W

(
l − K − k

K

)∣∣∣∣
� max

06j6ML

max
lj+16l<lj

√
log lj

l
6 max

06j6ML

√
log lj
lj+1

= O(1) a.s.,

since

max
06j6ML

√
log lj
lj+1

6 max
06j6ML

√
2
log (2−j log L)

2−j log L
6 sup

x>1

√
2
log x

x
= O(1).

In view of {B(t)} D= {B(1− t)}, we get analogously

max
L−log L6l<L,16k6K

L√
l(L− l)

∣∣∣∣B( l

L

)
−B

(
K(l − 1) + k

KL

)∣∣∣∣ = OP (1).

Putting everything together we arrive at the assertion.

Proof of Theorem 2.1. The idea of the proof is the following: Lemma 5.1 controls the
error when replacing Sa,π

L,K(l, k), k = 1, . . . ,K, in the statistics by Sa,π
L,K(l,K). Theorem 1

by Einmahl and Mason [7] allows us to replace those partial sums by a Brownian bridge
at time l/L. We finally need Lemma 5.2 to replace B(l/L) by B([K(l − 1) + k]/[LK]).
Then we obtain the assertion from the one for i.i.d. observations.

Since it is well known how to get results of the type above using an embedding as in
Theorem 1 of Einmahl and Mason [7], we will only give the proof for the q-weighted
CUSUM-statistic. For details of the other proofs confer Kirch [10].

Let

Dl,µ :=
(

l(L− l)
L

)µ L√
l(L− l)

∣∣∣∣ 1√
L

Π̃(l)−B

(
l

L

)∣∣∣∣ ,
where

{Π̃(l) : 1 6 l 6 L} D=

 1√
Kτ2

n(a)

l∑
i=1

K∑
j=1

(an[K(πL(i)− 1) + j]− an) : 1 6 l 6 L

 .
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5. Proofs of Section 2

and {B(t) : 0 6 t 6 1} is the Brownian bridge of Theorem 1 in Einmahl and Mason [7].
That Theorem with XL(i) := 1√

K τ2
n(a)

∑K
k=1 an(K(i− 1) + k) yields

max
16l6L−1

Dl,µ = OP (1) (5.1)

for all µ < min
(

ν−2
2ν , 1

4

)
. As indicated in Remark 1 of Einmahl and Mason [7] we replaced

the exponent 4 in assumption (2.3) of [7] by µ above, details can be found in Kirch and
Steinebach [12], Theorem 8, or Kirch [10], Appendix D.

We will first verify that as L →∞

max
16l6L,16k6K

(l,k) 6=(L,K)

1

q
(

K(l−1)+k
KL

) ∣∣∣∣ 1√
L

Π̃L(l)−B

(
l

L

)∣∣∣∣ = oP (1) as L →∞. (5.2)

Since maxη<t<1−η q(t) > C(η) > 0 for 0 < η < 1/2, we obtain by (5.1) for the maximum
over ηL 6 l 6 (1− η)L

max
ηL6l6(1−η)L

max
16k6K

1

q
(

K(l−1)+k
KL

) ∣∣∣∣ 1√
L

Π̃(l)−B

(
l

L

)∣∣∣∣
6 max

ηL6l6(1−η)L

1
C(η)

DL,µ

[
l

L

L− l

L

]1/2−µ

L−µ = OP (L−µ) = oP (1).

To handle the maximum over 1 < l < ηL and (1 − η)L < l < L recall that Csörgő and
Horváth [4], Chapter 4, Theorem 2.4, gives

lim
t→0

√
t

q(t)
= 0 = lim

t→1

√
1− t

q(t)
. (5.3)

Combining these facts with infη6t61−η q(t) > 0 we obtain

sup
0<t<1

min(t, 1− t)
q2(t)

= O(1). (5.4)

Now by max26l6L−1 max16k6K
l(L−l)

(l−1+ k
K

)(L−(l−1)− k
K

)
= O(1) we get uniformly in L

max
1<l<ηL,(1−η)L<l<L

16k6K

1

q
(

K(l−1)+k
KL

) ∣∣∣∣ 1√
L

Π̃(l)−B

(
l

L

)∣∣∣∣
� max

16l<L
Dl,0 max

1/L<l/L<η,(1−η)<l/L<1
16k6K

min
[√

l−1+k/K
L ,

√
1− l−1+k/K

L

]
q
(

l−1+k/K
L

)
= OP (1) o(1) = oP (1) as η → 0.

The assertion for l = L is trivial and for l = 1 (5.1), µ = 0, gives as L →∞

max
16k6K

1
q
(

k
KL

) ∣∣∣∣ 1√
L

Π̃L(1)−B(1/L)
∣∣∣∣ = 1√

Lq
(

1
KL

) OP (1) = oP (1),

since 1
Lq2(1/KL)

→ 0 and q is non-decreasing in a neighborhood of 0. By choosing η > 0
small enough and then L = L(η) sufficiently large we obtain (5.2).
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5. Proofs of Section 2

Lemma 5.1 and assumptions (2.1) respectively (2.2) yield analogously as L →∞

max
16l6L,16k6K

(l,k) 6=(L,K)

1√
LKτ2

n(a)
1

q
(

K(l−1)+k
KL

)
∣∣∣∣∣∣

K∑
j=k+1

(an[K(π(l)− 1) + j]− an)

∣∣∣∣∣∣
= oP (1),

(5.5)

where an application of the Markov inequality yields the assertion for l = L. This shows
that the error when replacing Sa,π

L,K(l, k) in the statistic T
(3)
L,K(q, π,a) by Sa,π

L,K(l,K) is
oP (1). Hence (5.2) and (5.5) yield

T
(3)
L,K(q, π,a)

τn(a)
= max

16l6L,16k6K
(l,k) 6=(L,K)

1
√

KL q
(

K(l−1)+k
KL

)
τn(a)

∣∣∣Sa,π
L,K(l, k)

∣∣∣
= max

16l6L,16k6K
(l,k) 6=(L,K)

1
√

KL q
(

K(l−1)+k
KL

)
τn(a)

∣∣∣Sa,π
L,K(l,K)

∣∣∣+ oP (1)

D= max
16l6L,16k6K

(l,k) 6=(L,K)

1

q
(

K(l−1)+k
KL

) ∣∣∣∣ 1√
L

Π̃(l)
∣∣∣∣+ oP (1)

= max
16l6L,16k6K

(l,k) 6=(L,K)

∣∣B ( l
L

)∣∣
q
(

K(l−1)+k
KL

) + oP (1).

We will now complete the proof by showing that

max
16l6L,16k6K

(l,k) 6=(L,K)

∣∣B ( l
L

)∣∣
q
(

K(l−1)+k
KL

) = max
16l6L,16k6K

(l,k) 6=(L,K)

∣∣∣B (K(l−1)+k
KL

)∣∣∣
q
(

K(l−1)+k
KL

) + oP (1). (5.6)

This means that the block permutation statistic has the same asymptotic behavior as
the original statistic for n i.i.d. standard normally distributed random variables. Thus
an application of Theorem 1.1 yields the assertion. First Lemma 5.2 b) and equation
(5.4) show for the maximum over log2 L 6 l 6 L− log2 L

max
log2 L6l6L−log2 L

16k6K

1

q
(

K(l−1)+k
KL

) ∣∣∣∣B( l

L

)
−B

(
l

L
− K − k

LK

)∣∣∣∣
= O

√ 1
log L

max
log2 L6l6L−log2 L

16k6K

√√√√ min(l, L− l)

Lq2
(

K(l−1)+k
KL

)
 = o(1) a.s.

To handle the maximum over l < log2 L and L − log2 L < l < L note that assumption
(2.4) respectively equation (5.3) give

max
16l<log2 L, L−log2 L<l<L

16k6K

min(l, L− l)

Lq2
(

K(l−1)+k
KL

) = o(1).
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By Lemma 5.2 c) we conclude

max
16l<log2 L, L−log2 L<l<L

16k6K

1

q
(

K(l−1)+k
KL

) ∣∣∣∣B( l

L

)
−B

(
l

L
− K − k

LK

)∣∣∣∣
= OP

 max
16l<log2 L, L−log2 L<l<L

16k6K

√√√√ min(l, L− l)

Lq2
(

K(l−1)+k
KL

)
 = oP (1).

(2.4) gives the assertion for l = L and we have proven (5.6).

6. Proofs of Section 3

Proof of Lemma 3.1. The proof follows the techniques outlined in Phillips and Solo
[14]. The method uses an algebraic decomposition of the linear filter, which allows us
to prove the limit theorem by means of a corresponding theorem for an independent
sequence of random variables additionally to some limit theorems for the telescoping
sums of another linear sequence.

First of all the following decomposition holds:

1
KL

L−1∑
l=0

[
K∑

k=1

(X(Kl + k)−Xn)

]2

=
1

KL

L−1∑
l=0

(
K∑

k=1

e(Kl + k)

)2

−K e2
n.

The law of iterated logarithm for linear processes (confer e.g. Theorem 3.3 of Philipps
and Solo [14]) gives for the second term

K e2
n = O

(
log log n

L

)
a.s.

The Beveridge-Nelson decomposition (confer Phillips and Solo [14], equation (15) et
sqq.) states e(j) = ε(j)

(∑
s>0 ws

)
+ ẽ(j − 1) − ẽ(j) where ẽ(·) is another stationary

linear process with existing second moment. We thus get for the first term

1
KL

L−1∑
l=0

(
K∑

k=1

e(Kl + k)

)2

=

∑
s>0

ws

2

1
KL

L−1∑
l=0

(
K∑

k=1

ε(Kl + k)

)2

+
1

KL

L−1∑
l=0

(ẽ(Kl)− ẽ(K(l + 1)))2

+

∑
s>0

ws

 2
KL

L−1∑
l=0

( K∑
k=1

ε(Kl + k)
)

(ẽ(Kl)− ẽ(K(l + 1)))

=: D1(L,K) + D2(L,K) + D3(L,K).

Concerning D1(L,K), the law of Marcinkiewicz–Zygmund (cf. e.g. Loève [13], p. 254,
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Moments Lemma 4◦) gives

1
KL

L−1∑
l=0

(
K∑

k=1

ε(Kl + k)

)2

=
1
n

n∑
i=1

ε2(i) +
1

KL

L−1∑
l=0

K∑
k1 6=k2

1

ε(Kl + k1)ε(Kl + k2)

= σ2 + OP

(
n
−µ−2

µ

)
+ OP

(√
1
L

)
,

where the last line follows from the Markov inequality, since

var
( 1

KL

L−1∑
l=0

∑
k1 6= k2

ε(Kl + k1)ε(Kl + k2)
)
� σ4 1

L

as some computations show. Since

E

(
1
L

L−1∑
l=0

(ẽ(Kl)− ẽ(K(l + 1)))2
)

6 4 E(ẽ(0)2) < ∞,

the Markov inequality gives D2(L,K) = OP

(
1
K

)
. Concerning D3(L,K) we get by the

Cauchy-Schwartz-Inequality

E

∣∣∣∣∣ 1
KL

L−1∑
l=0

(
K∑

k=1

ε(Kl + k)

)
(ẽ(Kl)− ẽ(K(l + 1)))

∣∣∣∣∣
6

1
KL

L−1∑
l=0

(
var

(
K∑

k=1

ε(Kl + k)

)
var(ẽ(Kl)− ẽ(K(l + 1)))

)1/2

� 1√
K

.

Again the Markov inequality gives D3(L,K) = OP

(√
1
K

)
. Putting everything together

we arrive at the assertion.

To prove Theorem 3.1 we first need a small auxiliary lemma:

Lemma 6.1. Under conditions (1.2) (the existence of the second moment suffices) and
(1.3) we have as n →∞

var

(
1√
n

n∑
l=1

e(l)

)
→

∑
s>0

ws

2

σ2 > 0.

Proof. A straightforward calculation gives the assertion. For details confer Kirch [10],
Lemma 3.5.2.

Proof of Theorem 3.1. The idea of the proof is to apply Theorem 2.1 with spe-
cial scores, more precisely under (i) we choose an(i) := X(i) and under (ii) an(i) =
X(i)/

√
d2K. In a first step we prove that assumptions (2.1) and (2.2) are fulfilled al-

most surely for the underlying error sequence {e(·)}, in a second step we conclude that
they are also fulfilled almost surely for {X(·)}.

In the following we will repeatedly use D as a constant. It may be different in every
inequality.
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We will now derive some strong laws of large numbers for the underlying linear process,
which we need to obtain (2.1) and (2.2) for {X(·)}. The Minkovski inequality and the
monotone convergence theorem give E |e(i)|ν 6 D

(∑
j>0 |wj |

)ν
for all i > 0. Thus

Theorem A.2 b) yields as L →∞

1
n

n∑
j=1

e(j) = O

(√
log n

n

)
a.s. (6.1)

To prove (2.2) under alternatives we need the following two laws for triangular ar-

rays. Let l∗ := dm∗/Ke (m∗ 6= n). Since E
(

maxk=1,...,K

∣∣∣∑k
j=1 e(Kl∗ + j)

∣∣∣2+δ(1)
)

=

E
(

maxk=1,...,K

∣∣∣∑k
j=1 e(j)

∣∣∣2+δ(1)
)

, Theorem A.2 and Remark A.1 give

1
K

K∑
k=1

e(Kl∗ + k) = O

(√
log K

K

)
a.s.,

as K →∞. For K bounded the Markov inequality yields

P

(
1√
L

∣∣∣∣∣
K∑

k=1

e(Kl∗ + k)

∣∣∣∣∣ > ε

)
� Kν

εν
L−ν/2 E |e(0)|ν � 1

εν
L−ν/2.

Because
∑

L L−ν/2 < ∞, it holds as L →∞

1√
L

∣∣∣∣∣
K∑

k=1

e(Kl∗ + k)

∣∣∣∣∣ = O
(√

log K
)

a.s. (6.2)

for K →∞ as well as K bounded. Similarly we deduce

1√
L(n−m∗)

∣∣∣∣∣∣
n∑

j=Kl∗+1

e(j)

∣∣∣∣∣∣ = o(1) a.s. (6.3)

The next two strong laws imply (2.1) and (2.2) for the error sequence {e(·)}. Since the
mixing coefficient of { 1

K

∑K
k=1 e(Kl + k) : l > 0} is smaller than the one of {e(i) : i > 1}

for all K, assumption (3.2) is uniformly fulfilled in K. Also this sequence remains
stationary for stationary {e(·)}. Consequently Theorem A.2 a) shows that there is a
D > 0 such that

µK(2 + δ(1)) := E max
k=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=k+1

e(Kl + k)

∣∣∣∣∣
2+δ(1)

< D,

uniformly in l > 0 and K. Note that 2(2+δ(2)+∆(2)) < (2+ δ̃)(2+δ(2)+∆(2)) = 2+δ(1).
From Corollary A.1 we conclude as L →∞

1
L

L−1∑
l=0

( 1√
K

K∑
k=1

e(Kl + k)
)2

=
1
L

L−1∑
l=0

[( 1√
K

K∑
k=1

e(Kl + k)
)2

− var
( 1√

K

K∑
k=1

e(k)
)]

+ var
( 1√

K

K∑
k=1

e(k)
)
→ C > 0 a.s.,

(6.4)
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where we either use Lemma 6.1 (if K →∞) or the fact that var
(

1√
K

∑K
k=1 e(k)

)
> c > 0,

if K is bounded. Moreover we get

1
L

L−1∑
l=0

[
max

k=0,...,K−1

∣∣∣ 1√
K

K∑
j=k+1

e(Kl + j)
∣∣∣2+δ̃

− µK(2 + δ̃)

]
+ µK(2 + δ̃)

6 D a.s.

(6.5)

Now we are ready to use Theorem 2.1 to arrive at the assertion. First consider (i). Note
that the condition includes the case of the null hypothesis (where d = 0). Choose the
scores an(i) := X(i). Without loss of generality assume µ = 0. We will now prove that
(2.1) and (2.2) are almost surely fulfilled for these scores. We begin with (2.2). Note
that

1
L

L−1∑
l=0

(
1√
K

K∑
k=1

(
X(Kl + k)−Xn

))2

=
1

KL

L−1∑
l=0

(
K∑

k=1

X(Kl + k)

)2

−KX
2
n.

Moreover it holds Xn = d n−m∗

n + en so that equation (6.1) yields

KX
2
n = Kd2

(
n−m∗

n

)2

+ 2
√

Kd
n−m∗

n

√
K en + K e2

n

= Kd2

(
n−m∗

n

)2

+ o

(√
Kd

n−m∗

n

)
+ o(1) a.s.

Furthermore equation (6.1) gives as L →∞

1
KL

L−1∑
l=0

(
K∑

k=1

(
d1{Kl+k>m∗} + e(Kl + k)

))2

=
1

KL

L−1∑
l=0

(
K∑

k=1

e(Kl + k)

)2

+
1

KL

L−1∑
l=0

(
K∑

k=1

d1{Kl+k>m∗}

)2

+
2

KL

L−1∑
l=0

 K∑
j=1

d1{Kl+j>m∗}

( K∑
k=1

e(Kl + k)

)

=
1

KL

L−1∑
l=0

(
K∑

k=1

e(Kl + k)

)2

+ Kd2 n−m∗

n
+ o

(√
|d|2K n−m∗

n

)
+ o(1) a.s.,

since d2K
L = o(1) so that

1
KL

L−1∑
l=0

(
K∑

k=1

d1{Kl+k>m∗}

)2

=
1

KL
d2 K2 n−m∗

K
+ o(1).

22



6. Proofs of Section 3

Equations (6.2) and (6.3) now imply keeping in mind condition (i)

2
KL

L−1∑
l=0

 K∑
j=1

d1{Kl+j>m∗}

( K∑
k=1

e(Kl + k)

)

� |d|K 1
n

∣∣∣∣∣∣
n∑

j=Kl∗+1

e(j)

∣∣∣∣∣∣+ K|d| 1
n

∣∣∣∣∣
K∑

k=1

e(Kl∗ + k)

∣∣∣∣∣
� |d|

√
K

n−m∗

n

1√
L(n−m∗)

∣∣∣∣∣∣
n∑

j=Kl∗+1

e(j)

∣∣∣∣∣∣
+
√

K|d|min
(

n−m∗

n
,
m∗

n

) 1
(2+δ̃) 1

n
δ̃

2(2+δ̃)

1√
L

∣∣∣∣∣
K∑

k=1

e(Kl∗ + k)

∣∣∣∣∣
= o

(√
|d|2K n−m∗

n

)
+ o(1) a.s.

Putting everything together equation (6.4) gives as L →∞

1
L

L−1∑
l=0

(
1√
K

K∑
k=1

(
X(Kl + k)−Xn

))2

= C + Kd2(n−m∗)/n−Kd2((n−m∗)/n)2 + o

(√
|d|2K n−m∗

n

)
+ o(1)

= C + Kd2[(n−m∗)m∗/n2] + o

(√
|d|2K n−m∗

n

)
+ o(1) a.s.

We now use the representation X(i) = (µ + d) − d1{i6m∗} + e(i) instead of (1.1), thus
an analogous calculation yields as L →∞

1
L

L−1∑
l=0

(
1√
K

K∑
k=1

(
X(Kl + k)−Xn

))2

= C + Kd2m∗/n−Kd2(m∗/n)2 + o

(√
|d|2K m∗

n

)
+ o(1)

= C + Kd2[(n−m∗)m∗/n2] + o

(√
|d|2K m∗

n

)
+ o(1) a.s.

Together this gives

1
L

L−1∑
l=0

(
1√
K

K∑
k=1

(
X(Kl + k)−Xn

))2

= C + Kd2
[
(n−m∗)m∗/n2

]
+ o

(√
|d|2K min

(
n−m∗

n
,
m∗

n

))
+ o(1)

> C + o(1) a.s.
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Now we prove that (2.1) holds almost surely for an(i) = X(i). Equations (6.1) and (6.5)
imply

1
L

L−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=k+1

(
X(Kl + j)−Xn

)∣∣∣∣∣
2+δ̃

� 1
L

L−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣ 1√
K

K∑
j=k+1

e(Kl + j)

∣∣∣∣∣
2+δ̃

+ |
√

Ken|2+δ̃

+ |
√

Kd|2+δ̃((n−m∗)/n)2+δ̃ + |
√

Kd|2+δ̃(n−m∗)/n

� 1 + |
√

Kd|2+δ̃(n−m∗)/n a.s.

(6.6)

Analogously we get using the representation X(i) = (µ + d)− d1{i6m∗} + e(i)

1
L

L−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣∣ 1√
K

K∑
j=k+1

(
X(Kl + j)−Xn

)∣∣∣∣∣∣
2+δ̃

� 1 + |
√

Kd|2+δ̃m∗/n a.s.,

which gives

1
L

L−1∑
l=0

max
k=0,...,K−1

∣∣∣∣∣∣ 1√
K

K∑
j=k+1

(
X(Kl + j)−Xn

)∣∣∣∣∣∣
2+δ̃

� 1 + |
√

Kd|2+δ̃ min
(

m∗

n
,
n−m∗

n

)
� 1 a.s.

For the proof of (ii) we have to distinguish two main cases, i.e. Kd2 = O(1) and
1/(Kd2) = O(1). The first one is included in (i), so we can assume that 1/(Kd2) = O(1).
Choosing an(i) := X(i)/

√
Kd2 as scores the proof is analogous to the one above and

therefore omitted. For details confer Kirch [10], proof of Theorem 3.5.1. In the case where
d = d(n) is such that it follows neither of the above possibilities, we have infinitely many
n with Kd2 6 1 and also infinitely many with Kd2 > 1. Then just choose as scores

an(i) =

{
X(i) Kd2 6 1
X(i)/

√
Kd2 Kd2 > 1.

As above (2.1) and (2.2) hold almost surely for both subsequences, hence also for the
complete sequence. The assertion now follows from Theorem 2.1.

A. Some results for strong mixing random sequences

In this appendix we summarize some results on moment inequalities for dependent
(strong mixing) random sequences, which also yield a strong law of large numbers for
triangular arrays of dependent random variables.

Theorem A.1 (Yokoyama [18], Theorem 1). Let assumption (A) be fulfilled. Then we
have

E

∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣
2+δ

6 Γ(D1, α̃, δ,∆) n(2+δ)/2,

where Γ(D1, α̃, δ,∆) is a constant just depending on D1, α̃(·), δ, and ∆.
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Theorem A.2 (Serfling [16], Lemma B, Theorem 3.1). Under assumption (A) it holds:

a)

E

 max
l=1,...,n

∣∣∣∣∣∣
l∑

j=1

Zj

∣∣∣∣∣∣
2+δ
 6 D n(2+δ)/2,

where D only depends on δ and the joint distribution of the Zi.

b)

1
n

∣∣∣∣∣∣
n∑

j=1

Zj

∣∣∣∣∣∣ = O

(
(log n)1/(2+δ)(log log n)2/(2+δ)

n1/2

)
a.s.

Remark A.1. Assertion b) of Theorem A.2 remains true for a triangular array that
fulfills uniformly the assertion in a).

Corollary A.1. Let {Zi,n : 1 6 i 6 n, n > 1} be a triangular array, which fulfills
uniformly condition (A). Then we have as n →∞

1
n

n∑
i=1

Zi,n → 0 a.s.

Proof. The assertion is an easy consequence of the Markov inequality.
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Professor Josef Steinebach from University of Cologne for many productive discussions
and suggestions.

References
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