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4) Universität zu Köln, Mathematisches Institut, Weyertal 86–90,
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1 Introduction

We consider the time series model with a change after an unknown time point m, i.e.

Yi = Yi,n = xT
i β + xT

i δ I{i > m}+ ei, i = p + 1, . . . , n, (1.1)

where

xi = xi,n = (Yi−1,n, . . . , Yi−p,n)T , i = p + 1, . . . , n,

(p <) m = mn (≤ n), β = (β1, . . . , βp)T , δ = δn = (δ1n, . . . , δpn)T 6= 0 are unknown
parameters, and e1, . . . , en are independent identically distributed (i.i.d.) random er-
rors having a positive variance Var(e1) = σ2 and satisfying further conditions specified
below.

The function I{A} in (1.1) denotes the indicator of the set A. For the sake of conve-
nience, we suppress the index n in the observations Yi,n as well as in the parameters
mn and δn (and in variables depending on the latter) whenever possible, but keep in
mind that in the limiting results below, as n →∞, both mn and δn may be changing
when n is increasing.

The model (1.1) is a model for a change in autoregression. The parameter m is called
the change point. The problem is to test

H0 : m = n vs. H1 : m < n.

In the first part [17] of this work the following statistics for our testing problem were
introduced and their asymptotic properties, both under H0 and H1, were studied:

Tn = max
p<k<n

{
ST

k C−1
k Cn(C0

k)−1Sk

}/
σ̂2

n, (1.2)

Tn(ε) = max
nε≤k≤n(1−ε)

{
ST

k C−1
k Cn(C0

k)−1Sk

}/
σ̂2

n, (1.3)

Tn(q) = sup
0<t<1

{ST
b(n+1)tcC

−1
n Sb(n+1)tc

q2(t) σ̂2
n

}
, (1.4)

where ε ∈ (0, 1
2 ) is fixed, bac denotes the integer part of a, and Sk, k = p + 1, . . . , n,

are partial sums of weighted residuals, i.e.,

Sk =
k∑

i=p+1

xi(Yi − xT
i β̂n), k = p + 1, . . . , n, (1.5)
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with

β̂n = C−1
n

n∑
i=p+1

xiYi, (1.6)

Ck =
k∑

i=p+1

xix
T
i , C0

k = Cn −Ck, k = p + 1, . . . , n. (1.7)

Note that β̂n defined in (1.6) is the ordinary least squares estimator of the vector
parameter β in the model (1.1) with m = n (“no change”).

Furthermore σ̂2
n is a consistent estimator of σ2 (under H0), i.e.,

σ̂2
n

P→ σ2 (n →∞), (1.8)

possibly satisfying some additional assumptions, and q is a positive weight function of
the form

q(t) = qβ(t) =
(
t(1− t)

)β
, t ∈ (0, 1), β ∈ [0, 1/2). (1.9)

Remark 1.1. Similar to the discussion in Hušková et al. [17], we could allow for more
general weight functions q, being positive on (0, 1), nondecreasing in a neighborhood
of 0, nonincreasing in a neighborhood of 1, with inf{q(t); t ∈ (η, 1 − η)} > 0 for all
η ∈ (0, 1/2) and

∫ 1

0

1
s(1− s)

exp
{
− cq2(s)

s(1− s)

}
ds < ∞

for all c > 0, but in order to avoid technicalities in the proofs we confine ourselves to
functions q as in (1.9).

Note that large values of either of the test statistics in (1.2)–(1.4) indicate that the
null hypothesis is violated. Therefore the critical regions have the form:

Tn ≥ tn(α), (1.10)

where tn(α) is determined in such a way that the test has level α. Approximations to
critical values can be obtained either through the limit distribution of the considered
test statistics under H0 or through resampling. In Part I of this work [17], the first
approach was studied, while we will now consider the possible application of different
bootstrapping methods.

The paper is organized as follows. In the next section, for the sake of comparison
below, we summarize the asymptotic distributions of the above test statistics under
the null hypothesis. In Section 3, we introduce two types of bootstrap, namely the
regression bootstrap and the pair bootstrap, to derive critical values. It will turn out
that the bootstrap statistics, given the observations Y1, . . . , Yn, have the same limit
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behavior under the null hypothesis as the original statistics. Under alternatives they
converge in distribution to a similar but different limit distribution. Yet this still
guarantees consistency of the corresponding test procedures. In Section 4, a small
simulation study will be presented which indicates that the bootstrap tests are better
than the corresponding asymptotic ones, if the performance is measured by α− and
β−errors, respectively. The proofs of our results are given in Section 5.

2 Limiting distributions under H0

Here we briefly summarize the assumptions and results of the first part [17] of our
work. This is mainly for the sake of comparison, because it will turn out that the
bootstrap statistics – at least under the null hypothesis – have the same asymptotic
behavior.

We assume that the sequence {Yi, i = p + 1, . . . , n} satisfies either of the following
assumptions:

(A.1) The observations Yp+1, . . . , Yn follow the model (1.1) with m = n; the initial
values Y1, . . . , Yp are independent of ep+1, . . . , en; βp 6= 0, and the roots of the
polynomial tp − β1t

p−1 − . . .− βp are less than one in absolute value.

(A.2) The vector xp+1 = (Yp, . . . , Y1)T of initial observations satisfies

xp+1 =
∞∑

j=0

Bj ep−j , (2.1)

where

B =

(
β1, . . . , βp

Ip−1 0

)
and ek = (ek, 0, . . . , 0)T , (2.2)

with Ip−1 denoting the (p− 1)-dimensional unit matrix.

(A.3) The observations Yp+1, . . . , Yn follow the model (1.1) with m = bnθc, θ ∈ (0, 1);
Y1, . . . , Yp are independent of ep+1, . . . , en ; βp 6= 0, the roots of the polynomial
tp − β1t

p−1 − . . . − βp are less than one in absolute value, βp + δp 6= 0, and the
roots of tp − (β1 + δ1)tp−1 − . . . − (βp + δp) are also less than one in absolute
value, δ = (δ1, . . . , δp)T 6= 0.

Note that (A.1) corresponds to H0, under which the observations form an autoregres-
sive sequence, while (A.3) corresponds to an alternative model, in which the observa-
tions before some change follow an autoregressive model with parameter β, and after
the change they follow a different autoregressive model with parameter β + δ (δ 6= 0).

The distributions of the error terms {ei} satisfy either of the following assumptions:
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(B.1) {ei, i = 0,±1, . . . } are i.i.d. random variables having zero mean, positive vari-
ance σ2, finite moment E |ei|4+η < ∞ for some η > 0, and a density f such
that

sup
−∞<a<∞

1
|a|

∫ ∞

−∞
|f(x + a)− f(x)| dx < ∞.

[This assumption has been used in [17] to show that the sequence {Yi} fulfills a
strong mixing condition.]

(B.2) {ei, i = 0,±1, . . . } are i.i.d. random variables having zero mean, positive vari-
ance σ2 and finite fourth moment E |ei|4 < ∞.

Next, we recall the main results from [17] on the limiting behavior of our test statistics
under the null hypothesis.

Theorem 2.1. a) Let assumptions (A.1), (A.2) and (B.1) be satisfied. Let σ̂2
n be an

estimator of σ2 satisfying

σ̂2
n − σ2 = oP

(
(log log n)−1

)
(n →∞). (2.3)

Then,

lim
n→∞

P
(
anT 1/2

n − bn ≤ t
)

= exp{−2e−t}, t ∈ R, (2.4)

where an = a(log n), bn = bp(log n), and

a(y) = (2 log y)1/2, bp(y) = 2 log y +
p

2
log log y − log Γ

(p
2
)
, y > 1, (2.5)

with Γ(p) =
∫∞
0

tp−1e−tdt, p > 0.

b) Let assumptions (A.1), (A.2) and (B.2) be satisfied. Let σ̂2
n be a consistent estimator

of σ2, i.e., σ̂2
n

P→ σ2 as n →∞. Then, for any ε ∈ (0, 1/2),

(
Tn(ε)

)1/2 D→ sup
ε≤t≤1−ε

‖B(t)‖√
t(1− t)

(n →∞), (2.6)

where ‖ · ‖ denotes the p-dimensional Euclidean norm and {B(t), t ∈ [0, 1]} is a
p-dimensional (standard ) Brownian bridge process, i.e., B(t) = (B1(t), . . . , Bp(t))T

with independent (1-dimensional ) Brownian bridges {Bj(t), t ∈ [0, 1]}.

c) Under (1.9) and the assumptions of b), also

(
Tn(q)

)1/2 D→ sup
0<t<1

‖B(t)‖
q(t)

(n →∞), (2.7)

with {B(t), t ∈ [0, 1]} as in b).

The limit distribution in Theorem 2.1a) belongs to the extreme value types and it is
known that the convergence is fairly slow. Although approximations to the critical
values can be easily calculated, they are only reasonable for large n. The explicit form
of the limit distribution in Theorem 2.1c) is only known for q = q0 ≡ 1. Otherwise
limit distributions have to be simulated. Therefore we are interested in alternative
methods to derive critical values via bootstrapping procedures.
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3 Bootstrapping

It appears that bootstrap procedures, both with and without replacement, provide
reasonable approximations for the critical values of test statistics constructed to de-
tect changes in location and linear regression models with independent observations
(see, e.g., Antoch et al. [5], Antoch and Hušková [2],[3], Hušková [14], Hušková and
Picek [15],[16]).

In the present section we discuss some bootstrap methods to get approximations for
critical values related to the test statistics Tn, Tn(ε) and Tn(q) defined in (1.2), (1.3)
and (1.4), respectively, i.e., for dependent data. There exist various methods to im-
plement bootstrap procedures for time series data; for a comprehensive discussion see,
e.g., Lahiri [20], Franke et al. [10] or Hidalgo [11]. In contrast to Kirch [18], who used
blockwise resampling and resampling in the frequency domain to detect a change in a
location model with errors generated by a linear process, we focus here on resampling
methods based on residuals, which have been modified for our setup. More precisely,
we propose a regression bootstrap and a pair bootstrap to determine critical values for
the above test statistics.

We should point out that we wish to obtain an approximation for the null distribution
function of the test statistics introduced in Section 1, however, we do not know whether
the available data follow the null hypothesis or an alternative. Certain parameters are
present under alternatives only. Therefore we have to adjust existing bootstrapping
methods to our setup.

We shall prove that the limit distributions of our bootstrap statistics, given the ob-
servations Y1, . . . , Yn, are the same as for the original statistics, at least under the
null hypothesis. This shows that the bootstrap test holds the chosen level asymptoti-
cally. Under alternatives the bootstrap statistics, given the observations, still converge
in distribution, but in some cases to a somewhat different limit distribution. Since
Theorem 3.1 of the first part [17] of this work shows that the original statistics con-
verge (in a P-stochastic sense) to infinity under alternatives, the bootstrap tests are
also consistent.

One can develop bootstrapping procedures based either on “residuals under H0” or on
“residuals taking possible changes into account”. Here are the residuals we use:

êi = Yi − xT
i β̂n, i = p + 1, . . . , n, (3.1)

and

ẽi =


êi, min(m̂, n− m̂) ≤ d1n, i = p + 1, . . . , n,

Yi − xT
i β̂ bm, min(m̂, n− m̂) > d1n, i = p + 1, . . . , m̂,

Yi − xT
i β̂

0bm, min(m̂, n− m̂) > d1n, i = m̂ + 1, . . . , n,

(3.2)

with a sequence {d1n} to be specified below, and with β̂ bm and β̂
0bm denoting the ordi-

nary least squares estimators of β based on Y1, . . . , Y bm and Y bm+1, . . . , Yn, respectively.
Furthermore, m̂ is supposed to be an integer-valued estimator of m satisfying

m̂−m = oP(d2n) (n →∞), (3.3)
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under H1, for a sequence {d2n} such that

d2n →∞, d2n/n → 0 (n →∞). (3.4)

Proposition 3.1 in the first part [17] of this work gives some basic limit properties for
the estimators

m̂1 = min
{
k ∈ (p, n) : ST

k C−1
k Cn(C0

k)−1Sk = max
p<`<n

ST
` C−1

` Cn(C0
`)
−1S`

}
(3.5)

and

m̂2 = min
{
k ∈ (p, n) : ST

k C−1
n Sk = max

p<`<n
ST

` C−1
n S`

}
. (3.6)

Under (A.2), (A.3) and (B.1), both estimators have the property (3.3) for any sequence
{d2n} satisfying (3.4).

The quantities êi, i = p + 1, . . . , n, are the residuals under H0, while the residuals
ẽi, i = p+1, . . . , n, take a possible change into account. The latter residuals are more
convenient for our situation and will be used in the following two subsections. The
former ones can also be taken, but one possibly looses some power.

To develop proper bootstrap versions of our test statistics it is useful to note that,
under H0,

Sk =
k∑

i=p+1

xiei −CkC−1
n

n∑
j=p+1

xjej , k = p + 1, . . . , n, (3.7)

Sn = 0, (3.8)

and also that, by Lemma 4.5 in [17], under H0, the sequence of processes

{C−1/2
n V n(t), t ∈ [0, 1]}, n = p + 1, . . . ,

with

V n(t) =
1

σ̃n
√

n

bntc∑
i=p+1

xiei, k = p + 1, . . . , n, (3.9)

σ̃2
n =

1
n− p

n∑
i=p+1

(ẽi − ẽn)2, (3.10)

ẽn =
1

n− p

n∑
i=p+1

ẽi, (3.11)
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converges in D[0, 1] to a p-dimensional Wiener process {W (t), t ∈ [0, 1]} with indepen-
dent components, i.e., W (t) = (W1(t), . . . ,Wp(t))T with independent (1-dimensional )
standard Wiener processes {Wj(t), t ∈ [0, 1]}. The test statistics Tn, Tn(ε) and Tn(q)
are functionals of the process {V n(t), t ∈ [0, 1]}.

We shall study a bootstrap with replacement. However, one can also consider a boot-
strap without replacement. It has the same limit performance as the respective boot-
strap with replacement, but the proofs of the results become somewhat more technical.

In the sequel P∗, E∗, Var∗, and Cov∗ denote the conditional probability, expectation,
variance, and covariance, respectively, given the observations Y1, . . . , Yn. The indices
R or P are used to distinguish between regression bootstrap and pair bootstrap.

The proofs of the results of the following two subsections are postponed to Section 5.

3.1 Regression bootstrap

The idea of the regression bootstrap relies on a similarity of the considered model (1.1)
to the linear regression model with given design points xi, i = p + 1, . . . , n (see, e.g.,
Csörgő and Horváth [7] or Antoch and Hušková [3] among others). Then one works
with the bootstrap sample with replacement from ẽp+1, . . . , ẽn. Denote such a sample
by ẽ∗p+1, . . . , ẽ

∗
n.

This leads to the regression bootstrap versions S∗k,R of Sk, k = p + 1, . . . , n, defined
as

S∗k,R =
k∑

i=p+1

xi(ẽ∗i − ẽn)−CkC−1
n

n∑
j=p+1

xj(ẽ∗jn− ẽn), k = p+1, . . . , n, (3.12)

where ẽn is given in (3.11).

The corresponding bootstrap versions of the considered test statistics are defined as
the respective test statistics with Sk being replaced by S∗k,R, k = p + 1, . . . , n, e.g.,
the bootstrap version of Tn is defined as

T ∗n,R = max
p<k<n

{
S∗Tk,RC−1

k Cn(C0
k)−1)S∗k,R

}/
σ̃2

n, (3.13)

and similarly for the other test statistics.

Next we describe the conditional limit behavior of the bootstrap version of the test
statistic Tn.

Theorem 3.1. Let assumption (A.1) or (A.3) in combination with (A.2), (B.2) and
(2.3) be satisfied, and let m̂ be either of the estimators defined in (3.5) and (3.6).
Then, as n →∞,

P∗
(
an(T ∗n,R)1/2 − bn ≤ t

) P→ exp{−2e−t}, t ∈ R, (3.14)

with an and bn as defined in Theorem 2.1.
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Before stating assertions on the limit behavior of Tn(ε) and Tn(q), we investigate the
process

V ∗
n,R(t) =

1
σ̃n
√

n

bntc∑
i=p+1

xi(ẽ∗i − ẽn), t ∈ [0, 1], (3.15)

with σ̃2
n from (3.10). The process {V ∗

n,R(t), t ∈ [0, 1]}, given Y1, . . . , Yn, is a process
with

E∗V ∗
n,R(t) = 0, t ∈ [0, 1], (3.16)

Cov∗
(
V ∗

n,R(t1),V ∗
n,R(t2)

)
=

1
n

Cbnt1c, 0 ≤ t1 ≤ t2 ≤ 1. (3.17)

Recall that m = bnθc, θ ∈ (0, 1], where θ ∈ (0, 1) corresponds to alternatives while
θ = 1 does to the null hypothesis. From a functional central limit theorem for processes
with independent increments together with the properties of the matrices Ck we have:

Theorem 3.2. Let assumption (A.1) or (A.3) in combination with (A.2) and (1.8) be
satisfied, and let m̂ be either of the estimators defined in (3.5) and (3.6). Then, as
n →∞,

P∗
(
f
(
V ∗

n,R(·)
)
≤ x

) P→ P
(
f
(
Vθ(·)

)
≤ x

)
, (3.18)

for any x ∈ R and any continuous, real-valued f on D[0, 1], where {V θ(t), t ∈ [0, 1]}
is a Gaussian process with zero mean, covariance

Cov
(
V θ(t1),V θ(t2)

)
= Qt1 , 0 ≤ t1 ≤ t2 ≤ 1, (3.19)

and

C
P= lim

m→∞

1
m

Cm, C0 P= lim
n−m→∞

1
n−m

C0
m, (3.20)

Qt = min(t, θ)C + (t− θ)I{t > θ}C0, t ∈ [0, 1]. (3.21)

This theorem in combination with the properties of the matrices Ck implies:

Theorem 3.3. Let assumption (A.1) or (A.3) in combination with (A.2), (B.2) and
(1.8) be satisfied, and let m̂ be either of the estimators defined in (3.5) and (3.6). Set

Sθ(t) = V θ(t)−QtQ
−1
1 V θ(1), t ∈ [0, 1].

Then, as n →∞, for any x ∈ R,

a)

P∗(T ∗n,R(ε) ≤ x) P→ P
(

max
ε≤t≤1−ε

ST
θ (t)Q−1

t Q1(Q
0
t )
−1Sθ(t) ≤ x

)
, (3.22)

with Q0
t = Q1 −Qt.
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b)

P∗(T ∗n,R(q) ≤ x) P→ P
(

max
0<t<1

ST
θ (t)Q−1

t Sθ(t)
q2(t)

≤ x
)
. (3.23)

Clearly, in view of Theorem 3.1, the regression bootstrap “works” for the statistic Tn,
i.e., the approximation to critical values based on the regression bootstrap are asym-
ptotically correct, no matter whether the observations follow the null hypothesis or
some alternative. However, by Theorems 2.1 and 3.3, the regression bootstrap for
Tn(ε) and Tn(q) only has the correct asymptotics, when the observations follow the
null hypothesis or some local alternative. It converges to a different limit distribution,
when the data follow a fixed alternative. This is due to the fact that, while under H0

or local alternatives,

Qt = tC, Q−1
t Q1(Q

0
t )
−1 =

(
t(1− t)

)−1
C−1, t ∈ [0, 1],

the latter is not true under fixed alternatives. For details we refer to Lemma 4.2 in [17].
Nevertheless, as mentioned earlier, the corresponding bootstrap test is still consistent.

Remark 3.1. One can propose modifications of the above test statistics such that the
bootstrap also works under fixed alternatives, however, the procedure becomes more
involved. For example, let us define

V ∗∗
n,R(t) =



1
σ̃n

C
−1/2bm

√
m̂

n

bntc∑
i=p+1

xi(ẽ∗i − ẽn), 0 ≤ t ≤ bm
n ,

1
σ̃n

C
−1/2bm

√
m̂

n

bm∑
i=p+1

xi(ẽ∗i − ẽn)

+
1
σ̃n

(
C0bm)−1/2

√
n− m̂

n

bntc∑
i= bm+1

xi(ẽ∗i − ẽn), bm
n < t ≤ 1,

(3.24)

where m̂ is either of the estimators in (3.5) or (3.6). Clearly, for given Y1, . . . , Yn,
{V ∗∗

n,R(t), t ∈ [0, 1]} is a process with

E∗V ∗∗
n,R(t) = 0, t ∈ [0, 1],

Var∗
(
V ∗∗

n,R(t)
)

=


bm
n C

−1/2bm CbntcC
−1/2bm , 0 ≤ t ≤ bm

n ,

bm
n I + n−bm

n (C0bm)−1/2(Cbnt1c − C bm)(C0bm)−1/2
, bm

n < t ≤ 1.

(3.25)

The corresponding regression bootstrap test statistics have the form:

T ∗∗n,R(ε) = max
ε≤t≤1−ε

{ ||V ∗∗
n,R(t)− tV ∗∗

n,R(1)||2

t(1− t)

}
,

T ∗∗n,R(q) = max
0<t<1

{ ||V ∗∗
n,R(t)− tV ∗∗

n,R(1)||2

q2(t)

}
.
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These bootstrap versions provide asymptotically correct approximations for the limit
distributions of Tn(ε) and Tn(q), regardless whether the data follow the null or alter-
native hypotheses.

3.2 Pair bootstrap

This bootstrap was introduced by Künsch [19] (see also Shao and Tu [22] for more
details). We take a bootstrap sample with replacement from the pairs (xi, ẽi), i =
p + 1, . . . , n, and denote it by (x∗i , ẽ

∗
i ), i = p + 1, . . . , n. Then the corresponding

bootstrap partial sums are defined as

S∗k,P = V ∗
n,P (k/n)−C∗

kC∗−1
n V ∗

n,P (1), k = p + 1, . . . , n, (3.26)

where

C∗
k =

k∑
i=p+1

x∗i x
∗T
i +an I

(
I{p < k ≤ an}+I{n−an ≤ k ≤ n}

)
, k = p+1, . . . , n,

(3.27)

with an = (log log n)
1
2−κ for some 0 < κ < 1

2 , and

V ∗
n,P (t) =

1
σ̃n

bntc∑
i=p+1

x∗i (ẽ
∗
i − ẽn), 0 ≤ t ≤ 1. (3.28)

Note that V ∗
n,P (k/n), k = p + 1, . . . , n, are sums of i.i.d. random vectors. By direct

calculations we have

E∗V ∗
n,P (k/n) =

1
σ̃n

k

n− p

n∑
i=p+1

x∗i ẽn =
k

n
OP(1), p < k ≤ n,

Var∗
(
V ∗

n,P (k/n)
)

= k Σ̂n, k = p + 1, . . . , n,

with

Σ̂n =
1
σ̃2

n

1
n− p

n∑
i=p+1

xix
T
i (ẽi − ẽn)2. (3.29)

Also

E∗C∗
k =

k − p

n− p
Cn, k = p + 1, . . . , n. (3.30)

The pair bootstrap version of Tn is defined as

T ∗n,P = max
p<k<n

{
S∗Tk,P (C∗

k)−1C∗
n(C0∗

k )−1S∗k,P

}
,

and T ∗n,P (ε) and T ∗n,P (q) are defined accordingly. All three bootstrap versions of the
test statistics have the same limit distributions, given the observations Y1, . . . , Yn, as
the respective test statistics under H0. Hence they provide suitable approximations to
the critical values.

11



Theorem 3.4. Let assumption (A.1) or (A.3) in combination with (A.2), (B.2) and
(2.3) be satisfied, and let m̂ be either of the estimators defined in (3.5) and (3.6).
Then, as n →∞,

P∗
(
an

(
T ∗n,P

)1/2 − bn ≤ t
)

P→ exp(−2e−t), t ∈ R, (3.31)

with an and bn as given in Theorem 2.1.

Theorem 3.5. Let assumption (A.1) or (A.3) in combination with (A.2), (B.2) and
(1.8) be satisfied, and let m̂ be either of the estimators defined in (3.5) and (3.6).
Then, as n →∞, for any x ∈ R,

a)

P∗
((

T ∗n,P (ε)
)1/2 ≤ x

)
P→ P

(
sup

ε≤t≤1−ε

‖B(t)‖√
t(1− t)

≤ x
)
; (3.32)

b)

P∗
((

T ∗n,P (q)
)1/2 ≤ x

)
P→ P

(
sup

0<t<1

‖B(t)‖
q(t)

≤ x
)
. (3.33)

Remark 3.2. One can introduce simplified pair bootstrap test statistics based on

S∗∗k,P = V ∗
n,P (k/n)− k

n
V ∗

n,P (1), p < k ≤ n,

and define

T ∗∗n,P = max
p<k<n

{ 1
σ̂2

n

n2

k(n− k)
S∗∗Tk,P (C∗

n)−1S∗∗k,P

}
,

T ∗∗n,P (ε) = max
nε<k<n(1−ε)

{ 1
σ̂2

n

n2

k(n− k)
S∗∗Tk,P (C∗

n)−1S∗∗k,P

}
,

T ∗∗n,P (q) = max
p<k<n

{ 1
q2(k/n) σ̂2

n

S∗∗Tk,P (C∗
n)−1S∗∗k,P

}
.

These bootstrap statistics also have the same limit distributions, given the observa-
tions, as the respective test statistics under H0.

4 Simulations

In this section we present a simulation study to illustrate the performance of the boot-
strapping methods for small sample sizes n and to compare them with the asymptotic
tests. Let q = q0 ≡ 1 and ε = ε0 = 0.1 . We take m̂2 from (3.6) as an estimator for the
unknown change-point m.

12



statistic 90% 95% 97.5%
T

1/2
n 2.689 3.013 3.199

(Tn(ε0))1/2 2.655 2.862 3.119
(Tn(q0))1/2 1.177 1.334 1.466

Table 1: Simulated quantiles under the null hypothesis (based on 1000 rep.)

statistic 90% 95% 97.5%
T

1/2
n 3.265 3.659 4.045

(Tn(ε0))1/2 2.81 3.073 3.312
(Tn(q0))1/2 1.224 1.358 1.48

Table 2: Asymptotic quantiles under the null hypothesis, n = 200

The model is an AR(1)-model of length 200 with a parameter change at 100, β = 0.3,
b := β + δ = 0.3, 0.6, 0.8, and with standard normally distributed errors. Note that
b = 0.3 corresponds to the null hypothesis H0. Using the corresponding negative
parameter values turned out to give similar results.

Table 1 shows the simulated quantiles for the original statistics under the null hypoth-
esis based on 1 000 repetitions. The critical values of the limit distribution can be
found in Table 2. Here and in the sequel we use the approximation of the distribution
function of supε0≤t≤1−ε0

{
B2(t)

/(
t(1 − t)

)}
given in (3.6) of Antoch et al. [4]. The

tables show that the asymptotic critical values are too conservative in all cases.

Furthermore we simulated quantiles of the bootstrap statistics based on one (fixed)
underlying sequence of errors, which result in three samples of observations (b =
0.3, 0.6, 0.8). To calculate the bootstrap statistic we use 1 000 random bootstrap sam-
ples of the above observations. The results can be found in Tables 3 and 4, respectively.
The values turn out to provide better approximations of the actual null quantiles than
the asymptotic critical values. Furthermore the values are quite stable for different
alternatives in case of the regression bootstrap. In case of the pair bootstrap they
become somewhat larger the greater the parameter change is. Yet this does not seem
to influence the power of the test greatly as the size-power curves indicate below.

To get a better idea of how well the bootstrap quantiles match the null quantiles we
created QQ-plots of the one against the other. Again we used 1 000 simulations to
approximate the null quantiles and 1 000 bootstrap samples (of one fixed underlying
sequence of observations) to obtain an approximation of the bootstrap statistic given
these observations. Observations under different alternatives are based on the same
underlying error sequence for the sake of comparison. We indicate the 90%−, 95%−,
and 97.5%−quantiles to point out the relevant area of the QQ-plots. The plots can
be found in Figures 1 and 2, respectively. Again the plots show a very good match
of the actual null quantiles with the bootstrap quantiles, especially for the regression
bootstrap. For the pair bootstrap the quality of the QQ-plot depends on whether
the observations follow the null hypothesis or some alternative. Note that deviations
in the upper tail just occur for a very small percentage of the total sample of 1 000
simulated values of the test statistics.

Finally we demonstrate the actual level and the power of the tests based on boot-

13



statistic β + δ 90% 95% 97.5%
(T ∗nR)1/2 0.3 2.761 2.967 3.199
(T ∗nR)1/2 0.6 2.721 2.984 3.18
(T ∗nR)1/2 0.8 2.685 2.957 3.215

(T ∗nR(ε0))1/2 0.3 2.592 2.897 3.053
(T ∗nR(ε0))1/2 0.6 2.575 2.879 3.043
(T ∗nR(ε0))1/2 0.8 2.525 2.81 3.047
(T ∗nR(q0))1/2 0.3 1.164 1.295 1.414
(T ∗nR(q0))1/2 0.6 1.155 1.304 1.414
(T ∗nR(q0))1/2 0.8 1.131 1.27 1.417

Table 3: Simulated quantiles of the regression bootstrap (based on 1 000 bootstrap
samples each for the same sequence of observations)

statistic β + δ 90% 95% 97.5%
(T ∗nP )1/2 0.3 2.705 2.981 3.215
(T ∗nP )1/2 0.6 2.864 3.12 3.371
(T ∗nP )1/2 0.8 3.03 3.306 3.591

(T ∗nP (ε0))1/2 0.3 2.582 2.817 3.053
(T ∗nP (ε0))1/2 0.6 2.723 2.977 3.244
(T ∗nP (ε0))1/2 0.8 2.922 3.175 3.385
(T ∗nP (q0))1/2 0.3 1.146 1.265 1.388
(T ∗nP (q0))1/2 0.6 1.181 1.302 1.437
(T ∗nP (q0))1/2 0.8 1.282 1.396 1.542

Table 4: Simulated quantiles for the pair bootstrap (based on 1 000 bootstrap samples
for the same sequence of observations)

strapped quantiles respectively asymptotic critical values. For doing so, we created
plots of the empirical distribution function of the p-values of the statistic of 1 000 sim-
ulated time series according to the model with respect to the bootstrap respectively
asymptotic distribution. The bootstrap distribution is calculated for each of these
time series based on 1 000 bootstrap samples.
What we get is a plot that shows the actual α–errors respectively 1 − (β–errors), i.e.
empirical size and power, on the y-axis, for the chosen quantiles on the x-axis. So, the
graph for the null hypothesis should be close to the diagonal (which is given by the
dotted line), and for the alternatives it should be as steep as possible. The results can
be found in Figures 3 and 4, respectively, and are denoted size-power curves (SPC),
which differ from size-power trade-off curves as e.g. in Horváth et al. [12]. Note that,
from bottom to top, the curves correspond to the null hypothesis (b = 0.3), to the
alternative b = 0.6, and to b = 0.8, both for the asymptotic (dashed line) as well as
for the bootstrap test (solid line). The plots show the empirical size and power of the
test for any level between (0, 0.1), for α = 0.05 one obtains, e.g., the values in Table 5.

For all statistics the bootstrap tests work better than the asymptotic tests, the latter
possessing too low levels. For example, given a nominal level of 10%, the asymptotic
test has an actual level of approximately 5% for statistic Tn.
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(a) (T ∗
nR)1/2 (b) (T ∗

nR(ε0))1/2

(c) (T ∗
nR(q0))1/2

Figure 1: QQ-Plots for the regression bootstrap based on 1 000 samples

statistic asymptotic bootstrap
b = 0.3 b = 0.6 b = 0.8 b = 0.3 b = 0.6 b = 0.8

Regression bootstrap
(T ∗nR)1/2 0.004 0.175 0.809 0.049 0.425 0.947

(T ∗nR(ε0))1/2 0.028 0.391 0.938 0.051 0.459 0.954
(T ∗nR(q0))1/2 0.042 0.479 0.952 0.058 0.528 0.965
Pair bootstrap

(T ∗nR)1/2 0.004 0.156 0.825 0.05 0.419 0.944
(T ∗nR(ε0))1/2 0.038 0.415 0.942 0.058 0.516 0.965
(T ∗nR(q0))1/2 0.04 0.486 0.956 0.074 0.559 0.965

Table 5: Empirical level and power for nominal level α = 0.05
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(a) (T ∗
nP )1/2 (b) (T ∗

nP (ε0))1/2

(c) (T ∗
nP (q0))1/2

Figure 2: QQ-Plots for the pair bootstrap based on 1 000 samples

5 Proofs

We start this section with a lemma, which will be useful for both types of bootstrap
procedures.

Lemma 5.1. Let ẽi, i = p + 1, . . . , n, be the residuals defined in (3.2) with {d1n}
satisfying 1 ≤ d1n ≤ n and d1n/n →∞, as n →∞, and let ẽn and σ̃2

n be as in (3.10)
and (3.11), respectively. Choose m̂ as either of the estimators in (3.5),(3.6). Then

(i) under (A.1), (A.2) and (B.2),

ẽn = OP

(
n−

1
2
)
, σ̃2

n = σ2 +OP

(
n−

1
2
)

(5.1)

(independently of d1n);

(ii) under (A.2), (A.3) and (B.2), with δ 6= 0 fixed, for any 0 < λ < 1
4 ,

ẽn = OP

(
n−

1
2 + n−

3
2 d1−λ

2n + n−λ−1
)

(5.2)

σ̃2
n = σ2 +OP

(
n−

1
2 + d2nn−1

)
(5.3)
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(a) (T ∗
nR)1/2 (b) (T ∗

nR(ε0))1/2

(c) (T ∗
nR(q0))1/2

Figure 3: SPC-Plots for the regression bootstrap based on 1 000 time series
(curves correspond to b = 0.3 (H0), b = 0.6, b = 0.8 from bottom to top for asymptotic

(dashed) as well as bootstrap test (solid line))

for any sequence {d2n} satisfying (3.4).

Proof. We will not present here all technical details of the proof. Let us only notice
that, for min(m̂, n− m̂) ≤ d1n,

ẽi = ei−xT
i C−1

n

n∑
j=p+1

xjej +xT
i δI{i > n}−xT

i C−1
n C0

mδ, i = p+1, . . . , n, (5.4)

and, for min(m̂, n− m̂) > d1n, if we assume m̂ ≤ m without loss of generality,

ẽi =



ei − xT
i C−1bm

bm∑
j=p+1

xjej , i ≤ m̂,

ei − xT
i

(
C0bm)−1

n∑
j= bm+1

xjej

−xT
i

(
I I{m̂ < i ≤ m}+

(
C0bm)−1(C bm −Cm)

)
δ, i > m̂.

(5.5)

17



(a) (T ∗
nP )1/2 (b) (T ∗

nP (ε0))1/2

(c) (T ∗
nP (q0))1/2

Figure 4: SPC-Plots for the pair bootstrap based on 1 000 time series
(curves correspond to b = 0.3 (H0), b = 0.6, b = 0.8 from bottom to top for asymptotic

(dashed) as well as bootstrap test (solid line))

To make the paper more readable, instead of lengthy calculations, we formulate the
following auxiliary lemma, which provides all the necessary arguments also appearing
in the other proofs.

Lemma 5.2. (i) Let assumptions (A.1) or (A.3) in combination with (A.2) and (B.2)
be satisfied. Let m̂ be one of the estimators of m defined in (3.5),(3.6). Then, for any
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0 < λ < 1
4 , as n →∞,

m̂−1+λ
∥∥ bm∑

i=p+1

xi

∥∥ = OP(1), (n− m̂)−1+λ
∥∥ n∑

i= bm+1

xi

∥∥ = OP(1); (5.6)

m̂−1+λ
∥∥ bm∑

i=p+1

(xix
T
i − Exix

T
i )
∥∥ = OP(1); (5.7)

(n− m̂)−1+λ
∥∥ n∑

i= bm+1

(xix
T
i − Exix

T
i )
∥∥ = OP(1); (5.8)

m̂− 1
2
∥∥ bm∑

i=p+1

xiei

∥∥ = OP

(√
log n

)
; (5.9)

(n− m̂)−
1
2
∥∥ n∑

i= bm+1

xiei

∥∥ = OP

(√
log n

)
. (5.10)

(ii) Under assumptions (A.2), (A.3) and (B.2) only, with δ 6= 0,

∥∥Cm −C bm∥∥ = OP

(
|m− m̂|

)
. (5.11)

Proof. The assertions follow from Lemmas 4.2 and 4.3 in [17] and some immediate
modifications and extensions.

For instance, (5.7) and (5.8) follow as a consequence of Lemma 4.2 in [17]. When
considering, e.g., ηj = Yj−ν , ν = 1, . . . , p, and proceeding in the same way as in the
proof of Lemma 4.2 in [17], we get, together with (4.6) in [17],

max
p<k≤n

k−1+λ
∥∥ k∑

i=p+1

xi

∥∥ = OP(1); (5.12)

max
p≤k<n

(n− k)−1+λ
∥∥ n∑

i=k+1

xi

∥∥ = OP(1). (5.13)

which imply (5.6). Another application of Lemma 4.2 in [17] immediately yields

max
1≤k≤n−jn

k−1+λ
∥∥ jn+k∑

i=jn+1

(xix
T
i − Exix

T
i )
∥∥ = OP(1), (5.14)

for all sequences {jn} with jn ≤ n, which implies (5.11). (5.9) and (5.10) follow from
Lemma 4.3 in [17].
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5.1 Proofs for the regression bootstrap

Given xi, i = 1, . . . , n, the partial sums V ∗
n,R(k/n) defined in (3.15) are sums of

independent random vectors and hence our present situation corresponds to one of
a linear regression with regressors xi, i = 1, . . . , n. The difference from the usual
situation there is that we have a triangular array here and, moreover, while for the data
under H0 we have a so-called nontrending regression

[
n−1Cbntc ≈ tC, t ∈ (0, 1)

]
, this

is not the case under the alternative (see also the discussion after Theorem 3.3). The
proofs follow the lines of the proofs for a linear regression setup, but need modifications
in some places. For the sake of brevity, we focus on these modifications.

We need the following lemma:

Lemma 5.3. Let assumptions (A.1) or (A.3) in combination with (A.2) and (B.1) be
satisfied.Then, for any 0 < λ < 1

4 , as n →∞,

max
k1n≤k≤k2n

k−1+λ
∥∥Ck − kC

∥∥ = oP(1), (5.15)

max
k1n≤n−k≤k2n

(n− k)−1+λ
∥∥C0

k − (n− k)C0
∥∥ = oP(1), (5.16)

sup
ε<t<1−ε

∥∥ 1
n

Cbntc −Qt

∥∥ = oP(1), (5.17)

where C,C0,Qt are defined in (3.20) and (3.21), respectively, and {k1n}, {k2n} are
sequences of integers satisfying

1 ≤ k1n ≤ k2n < n, k1n →∞, k2n/n → 0.

Proof. Relations (5.15) and (5.17) are immediate consequences of Lemma 4.2 in [17]
and the properties of autoregressive sequences. Concerning (5.16) one has to be slightly
more careful. By Lemma 4.2 in [17] we have

max
k1n≤n−k≤k2n

(n− k)−1+λ‖C0
k − EC0

k‖ = oP(1).

For the proof of

max
k1n≤n−k≤k2n

(n− k)−1+λ‖EC0
k − (n− k)C0‖ = o(1)

it suffices to notice (see Section 4 in [17]) that E(xi+1x
T
i+1) = C, i = p, . . . ,m, while

for i ≥ m + 1 we have

E(xi+1x
T
i+1) =

i−m−1∑
j=0

∆jJ(∆T )j + ∆i−mC(∆T )i−m

= C0 −
∞∑

j=i−m

∆jJ(∆T )j + ∆i−mC(∆T )i−m,
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where J = E(e1e
T
1 ) with ‖J‖ = σ2 (see also (2.2)) and ∆ is the matrix defined in

Section 4 of [17] with all the eigenvalues less than one in absolute value. The result then
follows directly by utilizing the fact that ‖C‖ remains constant and ‖∆j‖ = O(ρj),
where 0 < |λmax| < ρ < 1, |λmax| being the largest in modulus eigenvalue of ∆.

Proof of Theorem 3.2. It follows from the above lemma together with Lemma 5.1,
Lemma 5.2 and the functional central limit theorem (confer, e.g., Davidson (1994),
Theorem 27.17).

Proof of Theorem 3.3. It is then an immediate consequence of Theorem 3.2.

Proof of Theorem 3.1. We follow the usual pattern of the proofs of these types of
assertions (see, e.g., Csörgő and Horváth [7], Davis et al. [8]). However, it has to be
taken into account that we have a triangular array here. So, we apply Theorem 6.2
below, which provides a suitable weak invariance principle with the required rate,
together with Lemma 5.3.

5.2 Proofs for the pair bootstrap

In the present situation V ∗
n,P (k/n), k = p+1, . . . , n, defined in (3.28) are sums of i.i.d.

random vectors which somehow simplifies the situation, however, there is a problem
with the random matrices C∗

k. Their elements are sums of i.i.d. random variables.

We shall make use of the following three lemmas and a weak invariance principle with a
suitable rate (cf. Theorem 6.1 below). According to the first lemma, C∗

k is sufficiently
close to its expectation and therefore it suffices to prove the results for the considered
statistics with C∗

k replaced by its expectation, i.e., by (k/n) Cn. The second lemma
enables us to replace the variance matrix Σ̂n by its asymptotic counterpart, while the
third lemma gives an upper bound for E∗||x∗i ẽ∗i ||2+η, which is needed for an application
of the invariance principle.

Lemma 5.4. Under the assumptions of Theorem 3.4, for any A > 0, γ ∈ [0, 1
2 ), and

p < kn ≤ n,

P∗
(

max
kn<k≤n

1
kγ

∥∥∥C∗
k −

k

n
Cn

∥∥∥ ≥ A
)

≤ DA−2 1
n

n∑
i=p+1

∥∥xi

∥∥2(
k−2γ+1

n + n−2γ+1
)

(5.18)

and

P∗
(

max
p<k≤n−kn

1
(n− k)γ

∥∥∥C∗0
k − n− k

n
Cn

∥∥∥ ≥ A
)

≤ DA−2 1
n

n∑
i=p+1

∥∥xi

∥∥2(
k−2γ+1

n + n−2γ+1
)
, (5.19)
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with some D > 0.

Proof. Denoting by xij and x∗ij (i = p + 1, . . . , n; j = 1, . . . , p) the components of xi

and x∗i , respectively, we get that, for 1 ≤ j, v ≤ p, and any p < kn ≤ n,

E∗x∗ijx
∗
iv =

1
n− p

n∑
i=p+1

xijxiv,

and

Var∗(x∗ijx
∗
iv) ≤ 1

n− p

n∑
i=p+1

(xijxiv)2 ≤ 2
n

n∑
i=p+1

∥∥xi

∥∥4
.

This in combination with the Hájek-Rényi inequality implies that, for each A > 0,

P∗
(

max
kn<k≤n

1
kγ

∣∣∣ k∑
i=p+1

(x∗ijx
∗
iv − E∗x∗ijx

∗
iv)
∣∣∣ ≥ A

)

≤ A−2
( n∑

i=kn

Var∗ (x∗ijx
∗
iv)

k2γ
+

1
k2γ

n

kn∑
i=p+1

Var∗ (x∗ijx
∗
iv)
)

≤ DA−2 1
n

n∑
i=kn

∥∥xi

∥∥4
( n∑

k=kn

k−2γ + k1−2γ
n

)
,

with some D > 0 and for any γ ∈ [0, 1
2 ). This immediately implies (5.18). The assertion

(5.19) can be proved in the same way and is hence omitted.

Lemma 5.5. Under the assumptions of Theorem 3.4, as n →∞,

Σ̂n =
1
n

Cn + OP

(
n−1/2 + (d2nn−1)1/2

)
,

with some λ > 0 and for any sequence {d2n} satisfying (3.4).

Proof. We focus on the case of fixed alternatives, i.e., δ 6= 0 does not depend on n.
First we assume that m− d2n ≤ m̂ ≤ m with {d2n} satisfying (3.4).

Due to Lemmas 5.1 and 5.2, it suffices to investigate

1
n− p

n∑
i=p+1

xT
i xi ẽ2

i . (5.20)
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We split the sum in (5.20) into two sums for the indices i ≤ m̂ and i > m̂. For the
sum over the indices i > m̂, we have

1
n− p

n∑
i= bm+1

xT
i xi ẽ2

i = An1 − 2An2 + An3, (5.21)

where

An1 =
1

n− p

n∑
i= bm+1

xT
i xi

(
ei − xT

i

(
C0bm)−1

n∑
j= bm+1

xj ej

)2
,

An2 =
1

n− p

n∑
i= bm+1

xT
i xi

(
ei − xT

i

(
C0bm)−1

n∑
j= bm+1

xjej

)
×
(
I I{m̂ < i ≤ m}+

(
C0bm)−1(C0bm −Cm)

)
δ,

An3 =
1

n− p

n∑
i= bm+1

xT
i xi

(
{xT

i (I I{m̂ < i ≤ m}+
(
C0bm)−1(C0bm −Cm)}δ

)2
.

By Lemmas 5.1 and 5.2, we get

An1 =
1

n− p

n∑
i= bm+1

xT
i xi e2

i +OP

(
n−1/2

)
,

An3 = OP

(
‖δ‖2

( 1
n

m∑
j= bm+1

‖xj‖4 +
1
n3

n∑
j= bm+1

‖xj‖2‖C0bm −Cm‖2
))

= OP

(
‖δ‖2d2n/n

)
,

|An2| ≤
√

An1An3 = OP

(
‖δ‖(d2n/n)1/2

)
.

Hence

1
n− p

n∑
i= bm+1

xT
i xi ẽ2

i =
1

n− p

n∑
i= bm+1

xT
i xi e2

i +OP

(
n−1/2 + ‖δ‖(d2n/n)1/2

)
,

(5.22)

and similarly,

1
n− p

bm∑
i=p+1

xT
i xi ẽ2

i =
1

n− p

bm∑
i=p+1

xT
i xi e2

i +OP

(
n−1/2

)
.

The last two relations lead to

1
n− p

n∑
i=p+1

xT
i xi ẽ2

i =
1

(n− p)

n∑
i=p+1

xT
i xi e2

i +OP

(
n−1/2 + ‖δ‖(d2n/n)1/2

)
.
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We get quite the same results for m ≤ m̂ ≤ m + d2n. Since the considered estimator
m̂ has the property (3.3), for any sequence {d2n} satisfying (3.4), the proof can be
easily completed.

We need one more assertion:

Lemma 5.6. Under the assumptions of Theorem 3.4, as n →∞,

E∗‖x∗i ẽ∗i ‖2+η = OP(1).

Proof. We investigate only the situation under HA and with m − d2n ≤ m̂ ≤ m.
Clearly,

E∗‖x∗i ẽ∗i ‖2+η =
1

n− p

n∑
i=p+1

‖xiẽi‖2+η ≤ D(Q1n + Q2n + Q3n + Q4n),

with some D > 0, where

Q1n =
1

n− p

bm∑
i=p+1

∥∥xi(ei − xT
i C−1bm

bm∑
i=p+1

xjej)
∥∥2+η

,

Q2n =
1

n− p

n∑
i= bm+1

∥∥xi(ei − xT
i C0−1bm

n∑
i= bm+1

xjej)
∥∥2+η

,

Q3n =
1

n− p

m∑
i= bm+1

∥∥xi

∥∥4+2η∥∥C0−1bm C0
m

∥∥2+η∥∥δ∥∥2+η
,

Q4n =
1

n− p

n∑
i= bm+1

∥∥xi

∥∥4+2η∥∥C0−1bm (C0
m −C0bm)

∥∥2+η∥∥δ∥∥2+η
.

By Lemmas 5.1 and 5.2 and since

∥∥ n∑
i=p+1

xiei

∥∥2+η = OP(n)

we get that

Q1n + Q2n = OP

(
1 + n−1/2

)
Q3n = OP

(
‖δ‖2+η (d2n/n)2+η

)
Q4n = OP

(
‖δ‖2+η(d2n/n)2+η nη/2

)
= OP

(
‖δ‖2+η d 2+η

2n n−2−η/2
)
,
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where we used also the inequality

n∑
p+1

∥∥xi

∥∥4+2η ≤
( n∑

p+1

∥∥xi

∥∥4
)1+η/2

= OP

(
n1+η/2

)
.

Hence, for m− d2n ≤ m̂ ≤ m,

E∗‖x∗i ẽ∗i ‖2+η = OP

(
1 + d 2+η

2n n−(4+η)/(4+2η)
)
,

and the same assertion can be proved for the case m ≤ m̂ ≤ m + d2n. An appropriate
choice of the sequence {d2n} completes the proof.

Proof of Theorems 3.4 and 3.5. It follows from Lemmas 5.4–5.6 above in combination
with Theorem 6.1 below.

6 Auxiliary results

Here we derive suitable versions of the invariance principles that play the crucial role
in the proofs of our theorems in Sections 3 and 5. It is a consequence of the results
proved by Sakhanenko [21] and later reproved by a student of Einmahl [9].

In our setup we need invariance principles for partial sums of independent random
vectors that form a triangular array. The last fact makes it impossible to use the
results by Csörgő and Horváth in their book [7] and a number of other papers.

We need two versions of invariance principles. One for the sums of i.i.d. random
vectors that is needed for the proof of the results for the pair bootstrap (Theorems 3.4
and 3.5), and more general, for sums of independent but nonidentically distributed
random vectors.

The problem here is the multidimensional situation and the fact that we have a trian-
gular array.

Let us start with the i.i.d. situation.

Theorem 6.1. Let Z1,n, . . . ,Zn,n be i.i.d. p-dimensional random vectors with zero
mean, variance matrix Σn, and lim supn→∞ E‖Z1,n

∥∥2+η
< ∞ with some η > 0.

Then, on a suitable probability space, there exists a sequence of p-dimensional standard
Wiener processes W n = (W1,n, . . . ,W p,n)T on [0,∞) such that, as n →∞,

max
kn≤k≤n

k−β
∥∥ k∑

i=1

Zi,n −Σ1/2
n W n(k)

∥∥ = OP(k−λ
n ), (6.1)

with some 0 < β < 1/2 and λ > 0 and for any 1 ≤ kn ≤ n, kn →∞.
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Proof. Without loss of generality we may assume that η ∈ (0, 1). Let us denote

n0 = 0, nj = bexp{jα}c (j = 1, . . . , Ln − 1), nLn = n, (6.2)

for α ∈ (0, 1), with Ln being the largest integer satisfying

exp{(Ln − 1)α} < n. (6.3)

Also denote L0
n the largest integer satisfying

exp{(L0
n)α} ≤ kn.

Then, by the results of Ampe [1] and Einmahl [9], we have that, for any β > 0,
x > 0 and any n ≥ n0 with some n0 > 0, there exist a universal positive constant D
(depending neither on x nor on n) and a sequence of p-dimensional standard Wiener
process W n = (W1,n, . . . ,W p,n)T on [0,∞) (the process depends x and n) such that
for j ≥ 2

P
(

max
nj−1<k≤nj

∥∥ k∑
i=nj−1+1

Zi,n −Σ1/2
n

(
W n(k)−W n(nj−1)

)∥∥ ≥ xnβ
j−1

)
≤ D x−(2+η)n

−β(2+η)
j−1 (nj − nj−1) E‖Z1,n

∥∥2+η
. (6.4)

Hence

Ln∑
j=L0

n+1

P
(

max
nj−1<k≤nj

∥∥ k∑
i=nj−1+1

Zi,n −Σ1/2
n

(
W n(k)−W n(nj−1)

)∥∥ ≥ xnβ
j−1

)

≤ D x−(2+η)
Ln∑

j=L0
n+1

n
−β(2+η)
j−1 (nj − nj−1)

≤ D1 x−(2+η)
Ln∑

j=L0
n

exp{−(j − 1)α(β(2 + η)− 1)} (6.5)

≤ D2 exp{−(L0
n − 1)α)(β(2 + η)− 1)}x−(2+η)

≤ D3 kβ(2+η)−1
n x−(2+η),

where we choose β ∈
(
1/(2 + η), 1/2

)
and we used the inequalities

exp{jα − (j − 1)α} − 1 ≤ exp{(j − 1)α−1α} − 1 ≤ (j − 1)α−1α. (6.6)

Next note that, for β ∈ [0, 1/2),

{
max

1≤k≤n
k−β

∥∥∥ k∑
i=1

Zi,n −Σ1/2
n W n(k)

∥∥∥ ≥ x
}

⊆
Ln⋃

j=L0
n

{
max

nj−1<k≤nj

∥∥∥ k∑
i=1

Zi,n −Σ1/2
n W n(k)

∥∥∥ ≥ xnβ
j−1

}
,
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and also, for nj−1 < k ≤ nj ,

k∑
i=1

Zi,n −Σ1/2
n W n(k) =

j−1∑
v=1

( nv∑
i=nv−1+1

{
Zi,n −Σ1/2

n

(
W n(nv)−W n(nv−1)

)})

+
k∑

i=nj−1+1

{
Zi,n −Σ1/2

n

(
W n(k)−W n(nj−1)

)}
.

The last two relations further imply

{
max

kn≤k≤n
k−β

∥∥∥ k∑
i=1

Zi,n −Σ1/2
n W n(k)

∥∥∥ ≥ x
}

⊆
Ln⋃

j=L0
n

{
max

nj−1<k≤nj

∥∥∥ k∑
i=nj−1+1

Zi,n −Σ1/2
n W n(k)

∥∥∥ ≥ D1xnβ∗

j−1

}

∪
{ L0

n∑
i=1

Zi,n −Σ1/2
n W n(L0

n))
∥∥∥ ≥ D1xL0β∗

n

}
,

for any β∗ < β and some D1 > 0. Here we used

i∑
v=1

nβ∗

v−1 =
i∑

v=1

exp{(v − 1)αβ∗} ≤ exp{(i− 1)αβ∗ + log i} ≤ D exp{(i− 1)αβ},

for any β∗ < β and some D > 0. Hence

P
(

max
kn≤k≤n

k−β∗
∥∥∥ k∑

i=1

Zi,n −Σ1/2
n W n(k)

∥∥∥ ≥ x
)
≤ D x−2−η k−λ

n ,

for any 1/(2 + η) < β∗ < β, some D > 0 and some λ > 0, which easily implies the
assertion of our theorem.

Next, we are interested in a similar assertion for the partial sums

Sk,n =
k∑

i=1

xi,nei,n, k = p + 1, . . . , n,

where

(C.1) e1,n, . . . , en,n are i.i.d. errors with mean 0, unit variance and E |e1,n|2+η ≤ D,
with some 0 < η < 1 and D > 0;
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(C.2) there exists a sequence of symmetric matrices Σn such that

max
1≤k≤n

kγ
∥∥∥1

k
Ck,n −Σn

∥∥∥ = O(1),

with some γ ∈ [0, 1/2) and

0 < lim inf
n→∞

Σn,

where

Ck,n =
k∑

i=1

xinxT
in, k = 1, . . . , n;

(C.3) for some η > 0,

lim sup
n→∞

1
n

n∑
i=1

∥∥xin

∥∥2+η
< ∞.

Theorem 6.2. Under the assumptions (C.1)–(C.3) there exists a sequence of p-dimen-
sional standard Wiener process W n = (W1,n, . . . ,W p,n)T on [0,∞) such that, as
n →∞,

max
kn≤k≤n

k−1/2(log k)β
∥∥Sk,n −Σ1/2

n W n(k)
∥∥ = OP

(
(log kn)−λ

)
,

for any β > 0, λ > 0, and for any 1 ≤ kn ≤ n, kn →∞.

Proof. We follow the lines of the proof of Theorem 6.1 with some modifications. For
chosen β, we take α such that 0 < α(1 + 2β) < 1. Particularly, since our summands
are not i.i.d., we have instead of (6.4), for j ≥ 2,

P
(

max
nj−1<k≤nj

∥∥(Sk,n − Snj−1,n)−
k∑

i=nj−1+1

Qni

)∥∥ ≥ xnβ
j−1

)

≤ D x−(2+η) n
−β(2+η)
j−1

nj∑
i=nj−1+1

∥∥xin

∥∥2+η
, (6.7)

where Qni, i = 1, . . . , n, are independent normally distributed random vectors with
zero means and Var Qni = xinxT

in.

Hence

P
(

max
kn≤k≤n

k−β
∥∥(Sk,n −

k∑
i=1

Qni)
∥∥ ≥ x

)

≤ D x−2−η
Ln∑

j=L0
n

n
−β(2+η)
j−1

nj∑
i=nj−1+1

∥∥xin

∥∥2+η
. (6.8)
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By the Abel summation formula,

Ln∑
j=L0

n

n
−β(2+η)
j−1

nj∑
i=nj−1+1

∥∥xin

∥∥2+η

≤
Ln−1∑
j=L0

n

nj∑
i=nL0

n

∥∥xin

∥∥2+η
(
n
−β(2+η)
j−1 − n

−β(2+η)
j

)
+

n∑
i=nL0

n

∥∥xin

∥∥2+η
n−β(2+η).

From assumption (C.3) we get that the r.h.s. of (6.8) is smaller than

D1

( Ln−1∑
j=L0

n

nj

(
n
−β(2+η)
j−1 − n

−β(2+η)
j

)
+ n−β(2+η)+1

)
,

with some D2 > 0, if we choose again β ∈
(
1/(2 + η), 1/2

)
. Then, following the proof

of the previous theorem, we obtain

P
(

max
kn≤k≤n

k−β
∥∥(Sk,n −

k∑
i=1

Qni)
∥∥ ≥ x

)
≤ D x−2−η k−λ

n ,

with some λ > 0. By the above arguments, we have just switched to the sums of
independent normally distributed random vectors. We still need one more step get to
a Wiener process approximation.

Toward this we define

Znj =
√

nj − nj−1 Σ1/2
n (Cnj −Cnj−1)

−1/2Mnj

with

Mnj =
nj∑

i=nj−1+1

Qni

Clearly,

Var Znj = (nj − nj−1)Σn

and

Var (Znj −Mnj) =
((

Cnj −Cnj−1

)1/2 −
√

nj − nj−1 Σ1/2
n

)2

Notice that, by assumption (C.2), the lim inf of the eigenvalues of Σn is bounded away
from 0. Then, in view of (C.2),

max
1≤j≤Ln

∥∥(Cnj −Cnj−1

)1/2 −
√

nj − nj−1Σ1/2
n

∥∥n−γ
j−1 = O(1),

so that, after some calculations, we get∥∥Var (Znj −Mnj)
∥∥ ≤ D n2γ−1

j−1 , j = 2, . . . ,
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with some D > 0.

We make use of the Feller inequality (applied to each component of Znj −Mnj) and
recall that, if X has a normal (0, 1) distribution, then P(|X| > x) ≤ exp{−x2/2}d/x,
with some d > 0. This results in the estimate

P
(
||Znj −Mnj || ≥ xn

β−γ+1/2
j−1

)
≤ D exp

{
− n

2(β−γ+1/2)
j−1 x2/2

}
x−1n

−β+γ−1/2
j−1 ,

for any x > 0 and some D > 0. Hence

P
(

max
L0

n≤j≤Ln

||Znj −Mnj ||n−β
j−1 ≥ x

)

≤ D

LN∑
j=L0

n

exp
{
− n

2(β−γ+1/2)
j−1 x2/2

}
x−1n

−β+γ−1/2
j−1

≤ D1 exp
{
− k2(β−γ+1/2)

n x2/2
}

x−1k−β+γ−1/2
n ≤ D3 k−λ1

n ,

for any λ1 > 0 and some positive constants D,D1, D2, where we choose β such that
β − γ + 1/2 > 0. It follows that

max
L0

n≤j≤Ln

∥∥Znj −Mnj

∥∥n−β
j−1 = oP(k−λ2

n ),

for some λ2 > 0.

Finally we show that, for any β > 0, λ > 0 and 0 < α < (1 + 2β)−1,

max
L0

n≤j≤Ln

max
nj−1≤k≤nj

k−1/2(log k)β
∥∥ k∑

i=nj−1+1

Qi

∥∥ = oP

(
(log kn)−λ

)
.

We prove this estimate componentwise. Recall that we have independent random
variables Qi with a normal (0, σ2

i ) distribution, i = 1, . . . , N, such that
∑N

i=1 σ2
i ≤ BN

with some B > 0. Then, by Example 9, p. 256, in Chow and Teicher [6], we have

P
(

max
1≤k≤N

k−1/2(log k)β
∣∣∣ k∑

i=1

Qi

∣∣∣ ≥ A
)
≤ exp{−At}E

(
exp

{
t

N∑
i=1

Qi

}
+exp

{
−t

N∑
i=1

Qi

})
for any A > 0 and t > 0. Since the Qi’s have a normal distribution,

E exp
{

t

N∑
i=1

Qi

}
= exp

{ t2

2

N∑
i=1

σ2
i

}
≤ exp

{ t2

2
NB

}
.

Hence

P
(

max
1≤k≤N

k−1/2(log k)β
∣∣∣ k∑

i=1

Qi

∣∣∣ ≥ A
)
≤ 2 exp

{
−At +

t2

2
NB

}
.
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On choosing t = A/(NB) we get

P
(

max
1≤k≤N

∣∣∣ k∑
i=1

Qi

∣∣∣ ≥ A
)
≤ 2 exp

{
−A2/(NB2)

}
.

Applying this to our situation we obtain, for some B > 0,

Ln∑
j=L0

n

P
(

max
nj−1≤k≤nj

k−1/2(log k)β
∥∥∥ k∑

i=nj−1+1

Qi

∥∥∥ ≥ A
)

≤
Ln∑

j=L0
n

P
(

max
nj−1≤k≤nj

k−1/2(log k)β
∥∥∥ k∑

i=nj−1+1

Qi

∥∥∥ ≥ A n
1/2
j−1(log nj−1)−β

)

≤ D

Ln∑
j=L0

n

exp
{
− A2nj−1(log nj−1)−2β

2B(nj − nj−1)

}
. (6.9)

Since

(nj − nj−1)/nj−1 ≤ (j − 1)α−1α,

the r.h.s. of (6.9) can further be bounded by

≤ D

Ln∑
j=L0

n

exp
{
−A2D1(j − 1)−α(1+2β)+1

}

≤ D exp
{
−A2D1(L0

n − 1)−α(1+2β)+1
}
≤ D(log kn)−λ,

for any λ > 0, which completes the proof of our theorem. For similar assertions confer
also the paper by Horváth and Shao [13].
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