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Abstract

In this work, we investigate statistical properties of change point estimators based
on moving sum statistics. We extend results for testing in a classical situa-
tion with multiple deterministic change points by allowing for random exogenous
change points that arise in Hidden Markov or regime switching models among
others. To this end, we consider a multiple mean change model with possible
time series errors and prove that the number and location of change points are
estimated consistently by this procedure. Additionally, we derive rates of con-
vergence for the estimation of the location of the change points and show that
these rates are strict by deriving the limit distribution of properly scaled estima-
tors. Because the small sample behavior depends crucially on how the asymptotic
(long-run) variance of the error sequence is estimated, we propose to use mov-
ing sum type estimators for the (long-run) variance and derive their asymptotic
properties. While they do not estimate the variance consistently at every point
in time, they can still be used to consistently estimate the number and location of
the changes. In fact, this inconsistency can even lead to more precise estimators
for the change points. Finally, some simulations illustrate the behavior of the
estimators in small samples showing that its performance is very good compared
to existing methods.

Keywords: binary segmentation, change point, hidden Markov model, moving sum
statistics, regime switching model
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1 Introduction

1 Introduction

There are essentially two approaches to multiple change point problems: Model se-
lection and hypothesis testing. Model selection was first proposed by [43] who used
Schwarz’s criterion ([39]) for estimating the number of changes in the mean in an
otherwise independent and normally distributed sequence of random variables. More
recently, approaches based on least squares ([44] in context of mean changes or [30] for
multivariate regression models), least absolute deviations ([7] for mean and simultane-
ous variance changes or [3] for linear regression models) or the minimum description
length (confer [13] for linear autoregressive models) have been proposed. Since such
procedures are usually computationally expensive, there exist many papers concerned
with solving the optimization problem in an efficient manner e.g. [22]. A different ap-
proach via an application of the Lasso was proposed by [19] resulting in an algorithm
in linear time. [9] and [35] refine existing information criteria such as the Schwarz
criterion by making the model complexity not only a function of the number of change
points but also a function of the location of the change points. This was motivated by
the unnecessary complexity of the model, when structural breaks appear close to each
other, at the beginning or at the end of the data set.

Most papers concerned with hypothesis testing in the context of change point problems
propose tests for a fixed or bounded number of changes (confer [4] for such F -type tests
or [31] for a generalization to M -tests), where a large class of literature is concerned
with the at most one change alternative (confer e.g. the monograph by [11]). Tests
designed for at most one change still have some power for multiple changes, which is
the idea behind binary segmentation methods first proposed by [42], where a change
point is estimated if the test is significant and then the procedure is repeated for each
segment until it is no longer significant. While binary segmentation procedures are
adaptable to different change point problems and can be coded in a computational
efficient way, it can be difficult to interpret the results in terms of significance due to
the multiple testing involved. Furthermore, the power can suffer greatly under certain
configurations of multiple changes, a drawback that is overcome by introducing an
additional randomization step (to select the segment to be tested) proposed by [18].
Another recent fully parametric approach [17] minimizes the number of change points
over the acceptance region of a suitable multiscale test. Multiscale tests have also
been proposed by [15], which can be used to test the null hypothesis of stationarity
versus possible change point alternatives.

In the context of testing, moving sum (MOSUM) or scan statistics have already been
investigated by [5], [10] or [20] as well as [21]. More recently, [38] use moving sum
statistics in the frequency domain to detect changes in the autocovariance structure
of multivariate time series. By construction these procedures control the overall sig-
nificance level thus avoiding issues due to multiple testing.

In this paper, we investigate properties of estimators for the change point location
based on such statistics, an idea proposed but not mathematically analyzed by [2].
This method does not require to fix an upper bound for the number of changes and
is computationally cheap, in fact the proposed method for i.i.d. errors achieves linear
complexity.

The aim of this paper is twofold: First, the theoretic properties of these estimators are
derived showing consistency for the number and location of the change points. Fur-
thermore, rates of convergence for these estimators are obtained. The corresponding
asymptotic distribution in a special case shows that these rates cannot in general be
improved.

The second aim of this paper is to investigate the behavior of these estimators in the
presence of random change points, as they occur e.g. in regime switching models (for
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2 MOSUM tests for multiple changes

a recent survey we refer to [16]), which are used to model structural breaks in time
series. In these models a non-observable process {Qi : i ∈ N} governs the regime of the
time series and a change point occurs when this non-observable process {Qi} switches
to another state. As long as this non-observable process is independent of the error
sequence governing the stationary regimes, the corresponding samples of such a regime
switching model look as if they were from a classical multiple change point model with
deterministic (but unknown) change points. For special cases such as Hidden Markov
Models, one can make use of the structure of the unobservable process to reconstruct
the sequence of states by use of e.g. the Viterbi algorithm (confer [8]). Nevertheless, it
is of interest whether asymptotic results for the classical change point setting carry over
to situations with random changes, as they offer a different nonparametric approach –
not making explicit assumptions on the structure of the unobservable process (except
that switches are rare) – to reconstruct the change points and in a second step the
states.

The paper is organized as follows: In the next section we introduce moving sum
statistics which have already been considered in the literature in the context of testing
for deterministic (but unknown) change points. In the first subsection we introduce the
multiple change model including possibly random change points that we will be using
throughout the paper and compare it with the classical multiple change situation. In
Section 2.2, we give the distribution of the moving sum statistic if no change points are
present and show that the corresponding tests have asymptotic power one in this more
general setting. Because the small sample performance of both tests and estimators
depends crucially on the estimator for the (long-run) variance, we propose to use a new
moving sum estimator in Section 2.3. In Section 3, we explain how the above moving
sum statistics can be used to consistently estimate both the number of change points as
well as their locations, derive rates in Section 3.2 for the estimators of the locations and
show that those rates are strict in Section 3.3. In Section 3.4, some non-asymptotic
results for i.i.d. innovations with known variance are given. In Section 3.5 we discuss
the problems of bandwidth choice inherent to the procedure. Some simulations in
Section 4 illustrate the small sample behavior of these estimators, before the proofs
are given in Section 5.

2 MOSUM tests for multiple changes

In this section, the multiple mean change problem is introduced as well as the MOSUM
statistic in the context of testing. Furthermore, we introduce a new moving sum (long-
run) variance estimator which increases the power under alternatives and leads to more
precise estimators in small samples.

2.1 Modeling Multiple Changes

The classical change point model, which allows for multiple changes in the mean, is
defined by

Xi =

q+1∑
j=1

µj1{kj−1,n<i6kj,n} + εi, i = 1, ..., n,

where

0 = k0,n < k1,n = bϑ1nc 6 ... 6 kq,n = bϑqnc 6 kq+1,n = n, 0 < ϑ1 6 . . . ϑq 6 1.
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2 MOSUM tests for multiple changes

The number of structural breaks q ∈ N, the change points k1,n, . . . , kq,n as well as the
expected values µ1, . . . , µq+1 ∈ R with µj 6= µj+1, j = 1, . . . , q, are unknown and the
centered stationary error sequence ε1, . . . , εn fulfills conditions stated below.

In this paper we investigate the theoretic properties of estimators based on moving
sum statistics for the number of changes q = qn as well as the locations of the change
points kj,n. We will not only show that they are consistent but also derive the rates
of convergence and in the above special case the joint asymptotic distribution which
shows that these rates are strict in general. While in the above classical model, the
distance between change points is proportional to n, we only require that it is larger
than a multiple of the bandwidth (see Assumption A.2).

The sample paths of this classical change point model coincide with sample paths for
many regime-switching models, where the change points (as well as the number of
change points) are random rather than deterministic. Consequently, one can expect
methods for the above classical change point problem to yield consistent results also for
regime-switching models, which could help to analyze their properties. For this reason
we investigate the properties of our estimation procedure for the more general situation
of random change points which includes the following regime-switching models:

Xi = µ̃Qi + εi, i = 1, . . . , n,

with possible (conditional) expectations µ̃1, . . . , µ̃K ∈ R, where µ̃i 6= µ̃j for i, j =
1, . . . ,K, i 6= j, and errors ε1, . . . , εn fulfilling the conditions below. The conditional
expectation of Xi is determined by a non-observable {1, ...,K}-valued stationary pro-
cess {Qi : 1 6 i 6 n}, K ∈ N, where we can even allow for an infinite state space.
The key features of a regime switching model for which change point methods are
applicable are (a) independence of the changes (i.e. of {Qi}) and the error sequence
and (b) long duration times of the non-observable process {Qi}. Consequently, obser-
vation switching models (confer [28]) such as threshold models introduced by [41] or
i.i.d. switching models are not covered by our theory in contrast to Hidden Markov
models where {Qi} is independent of the error sequence and with a low tendency to
switch. For a fixed realization the number of time points between two adjacent change
points is fixed and finite, so that those changes become invisible asymptotically if
naive asymptotics are used. Similarly to locally stationary processes [12] we adopt a
different approach for asymptotics, assuming an underlying triangular scheme

X
(n)
i = µ̃

Q
(n)
i

+ ε
(n)
i

with a sequence of non-observable processes {Q(n)
i : 1 6 i 6 n}. Furthermore, we

consider both a setup with a fixed (or at least bounded) number of change points
qn = q (qn = O(1)) as well as a setup with an increasing number of change points
qn → ∞, where the distance between adjacent change points grows at least with the
same rate as the bandwidth of the moving sum statistic (see A.2 below). In small
samples, this translates to a low tendency to switch and only relatively few change
points compared to the sample size.

We will use the following reparametrization of the above regime switching model which
emphasizes the similarities to the classical multiple change situation (where again
k0,n = 0 and kqn+1,n = n)

Xi =

qn+1∑
j=1

µj,n1{kj−1,n<i6kj,n} + εi, µj,n ∈ {µ̃1,n, . . . , µ̃Kn,n},

i = 1, . . . , n, where in contrast to the classical multiple change model the number
of change points qn, the change points k1,n, ..., kqn,n as well as µ1,n, . . . , µqn+1,n are
random variables. Due to the triangular scheme the classical multiple change model
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2 MOSUM tests for multiple changes

is a special case in this setting. In the following it will also be useful to rewrite the
model in terms of mean differences as

Xi = µ1,n +

qn∑
j=1

dj,n1{i>kj,n} + εi, dj,n = µj+1,n − µj,n, (2.1)

where dj,n are the mean changes. In the following, we will suppress the dependence of
kj,n, dj,n and µj,n on n and simply write kj , dj and µj for notational ease.

We are now ready to state the assumptions on the error distribution.

Assumption A.1. a) The number and magnitude of changes and their locations
{qn, dj,n, kj,n, j = 1, . . . , qn} are independent of the error sequence {εi}.

b) There exists a standard Wiener process {W (k) : 1 6 k 6 n} and ν > 0 such that
(possibly after changing the probability space)

n∑
i=1

εi − τW (n) = O(n1/(2+ν)) a.s.

with an existing and strictly positive long-run variance

τ2 = σ2 + 2
∑
h>0

γ(h) > 0, γ(h) = cov(ε0, εh), σ2 = var(ε1).

c) For some γ > 2 and some constant C > 0 it holds for any −∞ < ` 6 u <∞

E

∣∣∣∣∣
u∑
i=`

εi

∣∣∣∣∣
γ

6 C |u− `+ 1|γ/2.

Part a) is needed to guarantee that the stochastic behavior of (partial) sums of the
error sequence does not depend on the change points. This guarantees for example
that the moving sum statistic behaves like under the null hypothesis of no change
if the next change point is sufficiently far away. Since all the quantities in a) are
deterministic in the classical change point setting, Assumption A.1 is automatically
fulfilled in this case.

Invariance principles as in b) have first been derived for i.i.d. random variables by [25]
and [26]. Subsequently, many classes of time series have also been considered, e.g.
mixing time series (Theorem 4 in [27]) or near-epoch dependent time series ([29]).

The assumption in c) is needed to get rates of convergence for the change point esti-
mators. It holds e.g. for independent random variables or linear processes, for which it
follows from the Beveridge-Nelson decomposition (confer [6, 36]). It also holds for mar-
tingale difference sequences, certain Φ-mixing sequences (confer [40], Theorem 3.7.8)
but also for certain α-mixing sequences (confer [46], Theorem 1).

2.2 Testing for multiple mean changes using a moving sum statistic

[21] proposed to use moving sum (MOSUM) statistics for testing the classical multiple
change hypothesis in i.i.d. data. While in this paper the focus lies on the properties
of corresponding estimators for the number and location of changes, the asymptotic
null distribution plays an important role in this analysis. Therefore, we obtain the
null asymptotics in this section for dependent errors fulfilling A.1 b). Furthermore, we
show that the corresponding test statistic has asymptotic power one not only in the
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2 MOSUM tests for multiple changes

classical setting but also for the more general random change model above. Consider
the following moving sum statistic

Tn(G) = max
G6k6n−G

|Tk,n(G)|
τ

, (2.2)

Tk,n(G) = Tk,n(G;X1, . . . , Xn) =
1√
2G

(
k+G∑
i=k+1

Xi −
k∑

i=k−G+1

Xi

)
,

with bandwidth G = G(n) fulfilling

n

G
−→∞ and

n
2

2+ν log n

G
−→ 0, (2.3)

where ν and τ are as in A.1 b). The bandwidth assumption guarantees that G con-
verges to infinity but not too fast. We can calculate the above statistic in linear time
by using a simple recursive calculation

√
2GTk+1,n(G) =

√
2G (Tk,n(G) +Xk−G+1 − 2Xk+1 +Xk+G+1). (2.4)

The statistic in (2.2) compares at every time point G 6 k 6 n − G the mean of the
subsample Xk−G+1, . . . , Xk with the mean of the subsample Xk+1, . . . , Xk+G, where
a large difference indicates a change at this point. At point k this is essentially the
Wald version of the likelihood ratio statistic for the sample Xk−G+1, . . . , Xk+G with a
possible change at k ([24]).

Formally, we test the null hypothesis of no change H0 : qn = 0, or equivalently H0 :
Xi = µ1 + εi, i = 1, . . . , n, versus the alternative that at least one change occurs
H1 : qn > 1.

The following theorem gives the null asymptotics of the test statistic quantifying the
acceptable deviation from zero.

Theorem 2.1. Let the null hypothesis hold, i.e. Xi = µ1 + εi, i = 1, . . . , n, with {εi}
fulfilling A.1 b). If the bandwidth G fulfills (2.3), then

a(n/G)Tn(G)− b(n/G)
D−→ Γ,

where Γ follows a Gumbel extreme value distribution, i.e. P (Γ 6 x) = exp(−2 exp(−x))
and

a(x) =
√

2 log x, b(x) = 2 log(x) +
1

2
log log x+ log(3/2)− 1

2
log π.

The assertion remains true if τ in Tn(G) is replaced by an estimator τ̂k,n, which can
depend on the position k, and fulfills under the null hypothesis

max
G6k6n−G

|τ̂2
k,n − τ2| = oP

(
(log(n/G))

−1
)
. (2.5)

Consequently, we get an asymptotic level α test if the null hypothesis is rejected for
Tn(G) > Dn(G;α) with

Dn(G;α) =
b(n/G) + cα
a(n/G)

, cα = − log log
1√

1− α
. (2.6)

We now turn to the asymptotic behavior of the test statistic under the alternative of
at least one change, where we allow for random changes as in (2.1). The next theorem
proves that this test rejects with asymptotic power one, while subsequent paragraphs
derive the asymptotic properties of corresponding estimators for the location of the
change points. To this end, we require the following assumptions on the distance
between change points as well as the magnitude of changes:
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2 MOSUM tests for multiple changes

Assumption A.2. It holds for the distance between two changes

P

(
min

06j6qn
|kj+1 − kj | > cG

)
→ 1

for some c > 2 specified below.

This assumption shows the connection between the distance between changes and the
choice of bandwidth G. It states that the distance between two change points grows
at least like G where empirical evidence suggests that G should be chosen as large as
possible but such that any window of length 2G contains at most one change. On the
other hand, the distance between change points can be of smaller order than n, which
is different from the classical change point problem but of importance for the analysis
in situations, where changes tend to be closer together (as for the regime-switching
model).

Assumption A.3. It holds for the magnitude of changes:

a)
1

min16j6qn d
2
j

= oP

(
G

log(n/G)

)
.

b) P

(
min

16j6qn
|dj | > δn

)
→ 1

for some sequence δn > 0 indicating a non-stochastic lower bound for the occurring
mean changes.

Both assumptions give lower bounds for the mean changes and allow in particular for
local changes (if δn → 0). They will play an important role in the derivation of rates
of convergence for the proposed change point estimators.

The estimator for the long-run variance does not need to be uniformly consistent under
alternatives (as in (2.5)) but the following restrictions apply:

Assumption A.4. a) The (long-run) variance estimator is strictly positive with prob-
ability tending to one,

P

(
min

G6k6n−G
τ̂k,n > 0

)
→ 1.

b) The (long-run) variance estimator fulfills

max
G6k6n−G

τ̂2
k,n = oP

(
G min16j6qn d

2
j

log(n/G)

)
.

c) The (long-run) variance estimator is consistent outside a 2G-neighborhood of change
points with rate log(n/G)−1, i.e.

max
|k−kj |>G,j=1,...,qn

|τ̂2
k,n − τ2| = oP

(
(log(n/G))−1

)
,

In the next section we propose estimators for the long-run variance which fulfill the
above assumptions for an appropriate bandwidth choice.

Some long-run variance estimators such as the below flat-top kernel estimator do not
guarantee that the corresponding estimate is always positive. Under the null hypoth-
esis this effect vanishes asymptotically due to consistency of the estimator. However,
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Figure 2.1: Performance of the variance estimators σ̂2
k,n (black solid line) as in (2.7) and

the empirical variance σ̂2
n as in (2.8) (without taking possible change points into

account) (dashed line). The true variance of 1 is indicated by the horizontal red
line.

under alternatives this is not guaranteed which is why we need to make Assumption
A.4 a) to ensure that the estimator is neither negative nor zero asymptotically. It does
not matter for the procedure if τ is very small or even converges to zero (while being
strictly positive for all n) as this only results in a larger value of the statistic, which
increases the chance of detection keeping in mind that Assumption A.4 c) guarantees
consistency of the behavior away from change points. Typically, estimators for the
long-run variance that allow for negative values are modified in a way that ensures As-
sumption A.4 a) as negative variance estimates cause problems in almost all statistical
procedures. The standard solution for the flat-top kernel estimator is to truncate the
estimator from below by the sample variance divided by the logarithm of the sample
size to guarantee positivity, scale invariance in addition to asymptotic consistency if
no changes are present. In this sense Assumption A.4 a) is merely a technicality.

Assumption A.4 b) is a restriction on the rate of divergence for the (long-run) variance
estimator under alternatives. It follows from Assumptions A.3 a) and A.4 c) under
the null hypothesis respectively away from changes.

Assumption A.4 c) holds e.g. for translation invariant estimators, i.e. τ̂2
k,n = τ̂2

k,n(Xk−G+1, . . . , Xk+G) =

τ̂2
k,n(Xk−G+1 − µ, . . . ,Xk+G − µ) for any µ, if additionally

max
G6k6n−G

∣∣τ̂2
k,n(εk−G+1, . . . , εk+G)− τ2

∣∣ = oP
(
(log(n/G))−1

)
.

Theorem 2.2. Let X1, . . . , Xn follow (2.1) and let A.2 with c = 2 and A.3 a) hold.
Furthermore, let {εt} fulfill A.1 a) and b). Then, we get for any z ∈ R

P (a(n/G)Tn(G)− b(n/G) > z)→ 1,

i.e. the test has asymptotic power one. The assertion remains true, if τ is replaced by
an estimator τ̂k,n which can depend on k such that A.4 a) and b) hold.

2.3 Estimating the asymptotic variance

The small sample power as well as precision of estimators depends crucially on how the
(long-run) variance τ2 is estimated. While using a standard estimator based on the full
sample yields best results under the null hypothesis, this estimator is contaminated by
the mean changes under alternatives such that the estimate is too large (confer Figure
2.1). While the corresponding test has still asymptotic power one under relatively mild
assumptions (confer Theorem 2.2), it will suffer a great power loss in small samples
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2 MOSUM tests for multiple changes

compared to a test, where the true (long-run) variance is used. In the at most one
change situation, the standard solution for classic CUSUM (cumulative sum) statistics

is to estimate the possible change point k̂n (using the point of maximum of the statistic)
and then to calculate the sample variance after a separate mean correction for both
subsamples

1

n

k̂n∑
i=1

Xi −
1

k̂n

k̂n∑
j=1

Xj

2

+
1

n

n∑
i=k̂n+1

Xi −
1

n− k̂n

n∑
j=k̂n+1

Xj

2

,

where k̂n is a suitable estimator for the possible change point. Since the number of
changes is unknown in our case, such an approach is no longer feasible. To avoid this
problem, we propose to use a time dependent MOSUM type estimator which treats
each time point k as a possible change point estimating the variance after a separate
mean correction for the segment before and after k. Precisely, we propose to use the
following variance estimator in case of i.i.d. errors:

σ̂2
k,n :=

1

2G

(
k∑

i=k−G+1

(Xi −Xk−G+1,k)2 +

k+G∑
i=k+1

(Xi −Xk+1,k+G)2

)
, (2.7)

where X̄l,j =
1

j − l + 1

j∑
i=l

Xi,

which can be calculated in linear time similarly to (2.4). Figure 2.1 illustrates the
behavior of this estimator in comparison to the sample variance

σ̂2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2 (2.8)

for the time series in the upper picture which includes one change point (indicated by
the vertical line). The two lower pictures show the sample variance (dashed horizontal
line) as well as the time dependent performance of estimator (2.7) (solid line) for
different choices of bandwidths, where the true variance is 1 (as indicated by the red
horizontal line). While the sample variance clearly overestimates the variance, the
time dependent MOSUM estimator is consistent in regions with no change as well
as right at the change point but it overestimates the variance close to a change but
not right at it. While this later feature may first seem unattractive, we will explain
in Section 4 why this is a desirable property that can even help to get more precise
estimates for the location of the change points in small samples.

Similarly, we propose to use time dependent MOSUM versions of flat-top kernels as
proposed by [37] for the long-run variance in case of dependent errors

τ̂2
k,n := γ̂k(0) + 2

Λn∑
h=1

ω(h/Λn)γ̂k(h)

with autocovariance estimator

γ̂k(h) :=
1

2G

k−h∑
i=k−G+1

(Xi −Xk−G+1,k)(Xi+h −Xk−G+1,k)

+
1

2G

k+G−h∑
i=k+1

(Xi −Xk+1,k+G)(Xi+h −Xk+1,k+G),
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2 MOSUM tests for multiple changes

bandwidth Λn and suitable weights ω. For example, Bartlett weights defined by w(x) =
(1− x)+ or the following flat-top weights can be used

w(t) =


1, |t| 6 1/2,

2(1− |t|), 1/2 < |t| < 1,

0, |t| > 1.

Theorem 2.3. Let Xi = µ + εi, i = 1, . . . , n, {εi} fulfill Assumption A.1 b) as well
as E |εi|4 <∞ and

sup
h∈Z

∑
k∈Z

∑
l∈Z
|ν(h, k, l)| <∞, (2.9)

where ν(h, r, s) = cov(ε1ε1+h, ε1+rε1+s). Then it holds:

a) If n/G2 = O(1), we get

max
G6k6n−G

|σ̂2
k,n − σ2| = OP

(
n1/2

G

)
.

b) If Λ2
nn/G

2 = O(1) and the weights fulfill 0 6 w(x) 6 C, then

max
G6k6n−G

|τ̂2
k,n − τ2| = OP

(
Λnn

1/2

G
+ rn

)
.

where

rn =
∑
h∈Z
|w(h/Λn)− 1| |γ(h)|.

Remark 2.1. a) In a), we get the weaker rate OP (n2/(2+ν)/G) if only E |εi|2+ν <∞,
0 < ν < 2, and the stronger rate OP (

√
log(n/G)/G) for ν > 2 (for details we refer

to [34], proof of Theorem 6.14).

b) The rate rn depends on the choice of weights w(·) in addition to the convergence rate
of γ(h). If

∑
h∈Z h

α|γ(h)| <∞, 0 < α 6 1, which is a standard assumption in time
series analysis, then for both the Bartlett as well as flat-top weights rn = O (Λ−αn ).

From Theorem 2.3 we get (2.5) for i.i.d. innovations if n1/2 log(n/G)/G → 0 which
is implied by (2.3) if ν 6 2. For dependent errors, we obtain (2.5) under additional
assumptions on the bandwidth possibly in addition to the autocovariance structure as
indicated by Remark 2.1 b).

If changes are present, the estimators are influenced by these changes as demonstrated
in Figure 2.1, but we still obtain:

Theorem 2.4. Let the error sequence {εi} fulfill Assumption A.1 b), E |ε1|4 < ∞,
(2.9). Furthermore let Assumption A.2 hold with c = 2 in addition to max16j6qn |dj,n| =
OP (1), i.e. the mean changes are bounded. Then, we get for the random change point
model (2.1) (which includes the classical model):

a) If n/G2 → 0,

max
G6k6n−G

σ̂2
k,n = OP (1).

b) If Λ2
nn/G

2 → 0,

max
G6k6n−G

τ̂2
k,n = OP (Λn) .

10
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Figure 3.1: Time series with i.i.d. errors and three change points marked by the vertical lines
(upper panel) as well as σ̂−1

k,n|Tk,n(G)| (lower panel), where the horizontal line
gives the asymptotic critical value at the 5% level.

3 MOSUM-based estimators for multiple change points

Additionally to testing for changes, the MOSUM statistic can be used to estimate the
number and location of the change points (in rescaled time). In this section, we will
introduce those estimators and derive their asymptotic consistency. Additionally, we
will obtain rates of convergence for the estimator of the locations of the changes and
show that these rates are strict in general.

3.1 Asymptotic consistency

Figure 3.1 shows a time series with i.i.d. errors and three change points marked by
vertical lines (upper panel) as well as the statistic Tk,n(G)/τ̂k,n as a function of k
(lower panel), where the horizontal line marks the asymptotic critical value at the 5%
level and τ̂k,n = σ̂k,n as in (2.7). Obviously, the test statistic exceeds the critical value
in intervals around the true change points with the local maxima close to the locations
of the change points. The calculations of these estimators can also be done in linear
time (given the MOSUM process).

Based on this observation, we define estimators for the number of change points as
well as their locations as follows: Consider all pairs of indices (vj , wj) such that

τ̂−1
k,n|Tk,n(G)| > Dn(G;αn) for k = vj , ..., wj ,

τ̂−1
k,n|Tk,n(G)| < Dn(G;αn) for k = vj − 1, wj + 1,

wj − vj > η G with 0 < η < 1/2 arbitrary but fixed, (3.1)

where Dn(G;α) is as in (2.6). Then,

q̂n =̂ the number of pairs (vj , wj) (3.2)

is an estimator of the number of change points q, while

k̂j := arg max
vj6k6wj

|Tk,n(G)|
τ̂k,n

(3.3)

are estimators for the locations of the change points.

11



3 MOSUM-based estimators for multiple change points

Condition (3.1) is necessary to avoid overestimation by spurious local maxima exceed-
ing the critical value on the boundary between significant and insignificant areas, i.e.
when the statistic crosses the critical line.

For these estimators to be consistent we require that the sequence αn converges to 0
but not too fast, more precisely

αn → 0,
cαn

a(n/G)
= O(1), (3.4)

where a(·) is as in Theorem 2.1 and cαn as in (2.6).

This method has already been proposed but not mathematically analyzed by [2]. A re-
lated but somewhat different approach based on local maxima of a MOSUM likelihood
ratio statistic in addition to a model selection procedure for AR-time series has very
recently been considered by [45]. Furthermore, [32] use a related MOSUM procedure
for estimating change points in point processes.

We are now ready to prove that the number of change points as well as the locations in
rescaled time are estimated consistently. In the next sections, we derive convergence
rates of the change point estimators and show that these rates are strict in general.

Theorem 3.1. Let X1, . . . , Xn follow (2.1) and let A.2 with c = 2 and A.3 a) and
A.4 hold. Furthermore, let {εt} fulfill A.1 a) and b).

If αn fulfills (3.4), then it holds as n→∞

a) P (q̂n = qn) −→ 1.

b) P

(
max

16j6qn
|k̂j1{j6q̂n} − kj | > G

)
−→ 0.

The proof shows that the probability of the complements of the two events is bounded
by the type I and (a uniform in some sense) type II error, both of which converge to
zero asymptotically due to the assumptions (see Lemma 5.1).

3.2 Convergence rates

By Assumption A.1 c) we get the following forward as well as backward Hájék-Rényi-
type inequalities:

Lemma 3.1. Under Assumption A.1 c) it holds for any positive and non-increasing
sequence {ck}, any 1 6 ` 6 u, any m ∈ Z and any δ > 0

a) δγ P

 max
`6k6u

ck

∣∣∣∣∣∣
m+k∑
j=m+1

εj

∣∣∣∣∣∣ > δ

 6 C̃

(
cγ` `

γ/2 +

u∑
k=`+1

cγkk
γ/2−1

)
,

b) δγ P

 max
`6k6u

ck

∣∣∣∣∣∣
m∑

j=m−k+1

εj

∣∣∣∣∣∣ > δ

 6 C̃

(
cγ` `

γ/2 +

u∑
k=`+1

cγkk
γ/2−1

)
,

where C̃ only depends on C and γ of Assumption A.1 c).

The following theorem gives detailed bounds for the deviation of the estimators of the
change point locations from the true locations. Remark 3.1 simplifies these bounds in
a way that yields standard assertions well known for the one-change-point situation
and CUSUM statistics.

12



3 MOSUM-based estimators for multiple change points

Theorem 3.2. Let X1, . . . , Xn follow (2.1) and let A.2 with c = 2 and A.3 hold and
τ̂2
k,n = τ̂2

n fulfill A.4. Furthermore, let {εt} fulfill A.1 and αn (3.4).

a) It holds for any 1 6 j 6 qn as well as 1 6 ξn 6 G

P
(
|k̂j1{j6q̂n} − kj | > ξn

)
= δ−γn ξ

− γ2
n O(1) + o(1)

where the rates do not depend on j and δn is as in A.3 b).

b) If additionally P (qn > γn)→ 0, then

P

(
max

16j6qn
|k̂j1{j6q̂n} − kj |>ξn

)
= γnδ

−γ
n ξ

− γ2
n O(1) + o(1).

In both cases the additive term o(1) stems from the fact that the assertions only hold
on a sequence of asymptotic 1-sets (not depending on j). The bounds for these 1-sets
can be made precise if the type-I and (in some sense) uniform type-II errors are known,
similarly the O(1) terms can be made precise using Lemma 3.1.

Remark 3.1. a) If the probability on the left-hand side of a) is replaced by the
conditional probability (given dj), then δn on the right-hand side can be replaced
by dj .

b) If δ−2
n G−1 → 0, then

|k̂j1{j<q̂n} − kj | = OP
(
δ−2
n

)
,

where the rate cannot be improved if dj is asymptotically of the same rate as δn
(confer also a) above).

c) If additionally the number of changes is stochastically bounded as in the classical
change point situation, we obtain

max
16j6qn

|k̂j1{j<q̂n} − kj | = OP
(
δ−2
n

)
,

where again the rate cannot in general be improved.

d) Concerning the joint rate in a model with an increasing number of change points,
we cannot derive the limit distribution of the maximum as in the next section,
however, those rates cannot be improved in general. To this end, consider i.i.d.
errors, dj = d, τ̂k,n = τ and qn deterministic change points with kj+1−kj > 4G. On

the set Mn = {q̂n = qn , max16j6qn |k̂j − kj | < G} the estimators k̂j only depend

on the behavior of Xkj−2G+1, . . . , Xkj+2G−1, hence (k̂j1{j<q̂n} − kj), j = 1, . . . , qn,
are independent and identically distributed (on that set). Because Mn coincides
with the asymptotic 1-set in (5.7) in the above setting (which does not depend on
ξn), we get

P

(
max

16j6qn
|k̂j1{j<q̂n} − kj | > ξn

)
= 1− (1− P (|k̂1 − k1| > ξn)+O(P (MC

n )))qn+O(P (MC
n ))

= 1− exp[qn log(1− P (|k̂1 − k1| > ξn)+o(1))]+o(1)

= 1− exp[−qn(P (|k̂1 − k1| > ξn) + o(P (|k̂1 − k1| > ξn))+o(1)]+o(1),

where the Taylor-expansion log(1−x) = x+o(1) (as x→ 0) has been used. Because

the rate of P (|k̂1 − k1| > ξn) cannot be improved in general, neither can the joint
rate even with an increasing number of change points.
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3 MOSUM-based estimators for multiple change points

Even though only local information is used in the estimation of the change points and
the distance between change points is allowed to increase with a rate smaller than n
(Assumption A. 2), the rate of convergence for the change point estimator given in b)
above coincides with the optimal rates obtained in the at-most-one-change situation
using the full sample (confer Theorem 2.8.2 in [11]). It also coincides with the optimal
rate obtained in [44] (Theorem 1) in the classical mean change model with a fixed
and known number of changes and independent errors and is better than the rate of
convergence obtained in [19]. Furthermore, the rates are better than the ones obtained
by [18].

Remark 3.2. In general the assertions of Theorem 3.2 do not carry over to situations,
where an estimator τ̂2

k,n depending on k is used. For example, Assumptions A.4 do

not rule out the possibility of the estimator τ̂2
k,n underestimating the variance (even

asymptotically) close to the change point (but not at the change point), which would
result in a distortion of the point of maximum away from the true change point.
Consequently, a much more detailed analysis needs to be conducted in this case in
order to obtain analogous results. This can be difficult in particular for estimators in
the presence of dependence. A solution is to use the (long-run) variance estimator τ̂2

k,n

only to obtain q̂n as well as the region (vj , wj) as in (3.1), but then replace (3.3) by

k̂j = arg max
vj6k6wj

|Tk,n(G)| .

In this case, the proof of Theorem 3.2 remains correct and the assertions carry over.

On the other hand, the estimator σ̂2
k,n as in (2.7) has the nice property of overestimat-

ing the variance close to (but not at) the change point, which should heuristically lead
to an improvement for small samples and at least not to worse results asymptotically.
The following corollary shows that this is in fact true for this particular estimator.

Corollary 3.1. Let the assumptions of Theorem 3.2 be fulfilled for {εt} i.i.d. with
E |ε1|4 <∞ and use the variance estimator σ̂2

k,n as in (2.7). If n
G2 → 0, δ−2

n G−1 → 0

and d2
j = OP (1), then it holds

|k̂j1{j<q̂n} − kj | = OP
(
δ−2
n

)
.

3.3 Asymptotic distribution

In this section, we derive the asymptotic distribution of the estimators for the locations
for local changes. In particular this shows that the convergence rates of the estimators
are strict in general (confer also Remark 3.1). For non-local changes, the limit can
be derived using analogous methods but it is no longer pivotal but depends on the
underlying error distribution (for details in the classical at most one change situation
for the CUSUM statistic we refer to [1] as well as [14]).

In order to derive the asymptotic distribution we need to make some stronger assump-
tions on the error sequence:

Assumption A.5. Let the error sequence fulfill either (i) or (ii):

(i) {εi} are i.i.d.

(ii) {εi} are stationary and strong mixing and fulfill the functional central limit
theorem in forward and backward time.

Both assumptions ensure that functionals of the error sequence that are a fraction of
G apart are asymptotically independent, where the mixing assumption can be relaxed

14



3 MOSUM-based estimators for multiple change points

if the asymptotic independence remains true. In particular, under Assumption A.2
with c > 2, the change point estimators are asymptotically independent. The forward
functional central limit theorem is fulfilled by Assumption A.1 b), which follows for
example for exponentially mixing sequences under moment conditions (confer [27]).
Since mixing is a symmetric property, a backward invariance principle implying a
backward functional central limit theorem holds under the same assumptions.

Theorem 3.3. Let X1, . . . , Xn follow (2.1) and let A.2 with c > 2 and A.3 hold and
let τ̂2

k,n = τ̂2
n fulfilling A.4.. Furthermore, let {εt} fulfill A.1 and αn fulfills (3.4).

a) If dj
P−→ 0 but d2

jG
P−→∞, then it holds for j = 1, . . . , qn as n→∞

τ−2d2
j (k̂j1{j6q̂n} − kj)

D−→ arg max{Ws − |s|/
√

6 : s ∈ R},

where {Ws : s ∈ R} is a standard Wiener process.

b) If additionally Assumption A.5 (i) or (ii) holds, then for a fixed number of changes

qn = q and maxj=1,...,q d
2
j

P−→ 0, it holds as n→∞

τ−2
(
d2

1 (k̂11{16q̂n} − k1), . . . , d2
q (k̂q1{q6q̂n} − kq)

)
D−→ (S1, . . . , Sq) ,

where

Si = arg max{W (i)
s − |s|/

√
6 : s ∈ R}

and {W (i)
s : s ∈ R}, i = 1, . . . , q, are mutually independent standard Wiener

processes.

3.4 Some non-asymptotic results for i.i.d. normal innovations

Following [18], we derive some non-asymptotic results in the case where the innova-
tions are i.i.d. Gaussian with known variance σ2. Furthermore, we concentrate on
the classical setting, where the number of changes, change points and magnitude of
changes are non-random but can depend on the sample size n.

To keep the arguments simpler, we require the distance between any two change points
to be larger than 2G. We then apply the procedure from Section 3.1 with τ̂2

k,n = σ2

and the critical value cn instead of Dn(G;αn). The critical value cn is essentially of
the same order as Dn(G;αn) in the previous sections but we use a different notation
as the asymptotic interpretation of Dn(G;αn) no longer makes sense here.

Theorem 3.4. Let {εi} be i.i.d. N(0, σ2), dj = dj,n, kj = kj,n, qn deterministic with

dj > δn > 0, min
06j6qn

|kj+1 − kj | > 2G

and τ̂k,n = σ. Furthermore, let the critical value cn fulfill

cn >
√

4 log n,
√

2 cn 6 η δn
√
G−

√
8 log n. (3.5)

a) Then, it holds for some constant C > 0

P

(
q̂n = qn, max

16j6qn
|k̂j − kj | < G

)
> 1− C

T
.
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3 MOSUM-based estimators for multiple change points

b) It holds for any 1 6 j 6 qn as well as 1 6 ξn 6 G and any γ > 2

(i) P
(
|k̂j1{j6q̂n} − kj | > ξn

)
6 C̃ δ−γn ξ

− γ2
n − C

T
,

(ii) P

(
max

16j6qn
|k̂j1{j6q̂n} − kj | > ξn

)
6 C̃ qnδ

−γ
n ξ

− γ2
n − C

T

for some constant C̃ > 0 and C as in a).

There are several interesting observations about Theorem 3.4. First of all, (3.5) is
closely related to Assumption A.1 a) (for fixed η > 0) as well as Assumption 3.3 in [18]
for the wild binary segmentation procedure since δn in our notation is a lower bound
for the magnitude of changes and 2G is a lower bound for the distance between change
points. Similarly, to their result, we do not require that the number of changes is
bounded (except for the assumption on the distance between change points). Secondly,
if the number of changes is bounded, i.e. qn 6 q <∞, and the magnitude is bounded
from below, i.e. δn > δ > 0, then the assertion in b)(ii) yields

max
16j6qn

|k̂j1{j6q̂n} − kj | = OP (1),

which is slightly stronger than the statements in Theorem 3.1 and 3.2 in [18] for the
binary and wild binary segmentation algorithm.

3.5 Choice of bandwidth and alternative evaluations of MOSUM
graphs

In some extreme cases with small bandwidth G and very close changes as in Figures
4.2 or 4.3 below the condition wj − vj > ηG in (3.1) (eta-check) can be too restrictive.
In order to get asymptotic consistency of the change point estimators it has to be
replaced by another condition avoiding the double estimation of the same change
point. One alternative solution checks for each significant point k̃j whether it is also
a local maximum in the sense of

|Tk̃j ,n(G)|
τ̂k̃j ,n

= max
|k̃j−k|<bcGc

|Tk,n(G)|
τ̂k,n

, (maximum-check)

where c > 0 in a similar spirit as [45]. Significant local maxima in that sense are
included in the list of estimated change points. Similar arguments as in the proof of
Theorem 3.4 can be applied to show that there is only one significant local maximum
in each environment of a true change point with probability approaching one. In
practice, this method also detects changes that are more than cG but less than 2G
apart, where the graph may sometimes not fall beneath the asymptotic critical value
between changes (see Figure 4.3 below).

The main problem with the MOSUM statistic as investigated in this paper is that its
performance depends crucially on the choice of the bandwidth G. Theoretically, the
bandwidth should be chosen as large as possible with the restriction that there should
not be more than one change point in any window of size 2G (see also Assumption A.2),
i.e. G should be half the minimal distance between two change points. The simulations
below suggest that a somewhat larger window results in a good performance as well.

There are two main problems with the bandwidth: First, the distance between change
points is not known. Secondly, change point tests can only show good performance
if there are either large changes between short stationary stretches or small changes
between large stationary stretches. For the above MOSUM procedure this means that
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performance will suffer in data sets, where both large changes surrounded by small
stationary stretches and small changes surrounded by large stationary stretches are
present, when only one bandwidth is used.

One solution to this problem is to use the method merely as a diagnostic tool that can
be run with several bandwidths. Large changes surrounded by either large or small
stationary stretches will be detected with a small bandwidth, while smaller changes
surrounded by longer stationary stretches will be detected by larger bandwidths. This
can be visualized using plots similar to Figures 4.1, 4.2 and 4.3.

Another solution is an appropriate merging of change point candidates obtained from
different bandwidths. This is the idea behind the multiscale method proposed by [32]
which is based on their MOSUM statistics for detection of changes in point processes:
All change point candidates obtained from the MOSUM statistics based on the smallest
bandwidth are included, then one proceeds recursively with the next largest bandwidth
but only includes candidates if there is no previously detected change point in a suitable
environment of the candidate. We will call this procedure based on the MOSUM
method in this paper ’Merged MOSUM (bandwidth)’. One major drawback is that
it is not clear how to generalize it to situations when asymmetric bandwidths, i.e.
different bandwidth lengths to the right and left, are used. Those would be useful to
detect small changes with only a long stationary stretch to one side.

An alternative merging method (called ’Merged MOSUM (p-value)’) proceeds similarly
to [18] where change point candidates are included according to increasing p-values
unless a change point has already been detected in a suitable environment of the
candidate. This algorithm can easily be adapted to allow for asymmetric bandwidths.
However, care has to be taken as the p-value only corrects for multiple testing within
each set of bandwidth but not across different sets of bandwidths.

In the simulations below we implement both merging algorithms above based on
symmetric bandwidths from a given list G = G1, . . . , Gk, where in both cases the
maximum-check with c = 2/3 is used instead of the eta-check. The algorithms are
based on level α = 0.1 resp. p-values smaller than 0.1. When merging, we check
whether the newly detected change point is at least c = 2/3 of its bandwidth away
from the previously accepted change point candidates. In the future some more fine-
tuning of the method is needed and will be implemented in the R-package ’Mosum’.

Yet another alternative to be investigated in the future is the use of an information cri-
terion based on possible change points obtained from one or several MOSUM statistics
similarly to [18], who suggests to use an information criterion effectively as a stopping
rule for the wild binary segmentation method. This should take care of a possible
overestimation if one includes very small bandwidths in situations where changes are
relatively far apart. It should also deal with the multiple testing issue present when
multiple bandwidths are used. A somewhat different but related approach is taken
by [45], who use the local maxima of a MOSUM statistic with a single bandwidth as
possible change point candidates in order to reduce computational complexity of a full
information criterion based approach.

4 Simulations

In this section we illustrate the performance of the above change point estimators
based on several toy data sets. Nonparametric estimators for the long-run variance
are relatively imprecise even for larger sample sizes as this is a difficult statistical
estimation problem, so that we use i.i.d. errors in these simulations. Furthermore all
time series are created using the deterministic change point setting because this allows
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Figure 4.1: Two sample path and performance of σ̂−1
k,nTk,n(G) with bandwidths G = 10, 25,

50, 60 and η = 0.15 for ’Mix’-Signal, where critical values and detected change
points for α = 0.1 are indicated by vertical solid lines and for α = 0.5 by vertical
dotted lines. The horizontal lines give the asymptotic critical values for α = 0.1
(solid) and α = 0.5 (dotted).

Figure 4.2: Two sample path and performance of σ̂−1
k,nTk,n(G) with bandwidths G = 8, 10,

20 and η = 0.15 for ’Teeth’-Signal, where critical values and detected change
points for α = 0.1 are indicated by vertical solid lines and for α = 0.5 by vertical
dotted lines. The horizontal lines give the asymptotic critical values for α = 0.1
(solid) and α = 0.5 (dotted).
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q̂n − q 6 3 = 2 = 1 = 0 = 1 = 2 > 3
Merged MOSUM (bandwidth) 0.006 0.103 0.389 0.418 0.073 0.010 0.001

Merged MOSUM (p-value) 0.006 0.091 0.353 0.432 0.098 0.018 0.002
WBS 0.068 0.301 0.268 0.335 0.022 0.004 0.002

L1-error Median (mean) MAD (SD)
Merged MOSUM (bandwidth) 28 (38.84) 10.38 (47.73)

Merged MOSUM (p-value) 27 (36.64) 8.9 (46.97)
WBS 29 (36.37) 13.34 (39.31)

Table 4.1: Number of correctly estimated change points and L1-error for WBS and
merged MOSUM-procedure (with bandwidths G = {10, 25, 50, 60}) for the
mix signal based on those realizations where both methods detect the correct
number of change points

us to play with the locations of the change points and see how they influence the
estimators. All simulations are based on 1000 repetitions.

We will now show how the procedure works using some examples from [18] with i.i.d.
normal errors. We run the simulations with the other competing procedures that have
also been considered in [18] in precisely the same way, where we use the suggested sSIC-
method for wild binary segmentation. Precisely, the methods are: Segmentor from the
Segmentor3IsBack-R-Package, CumSeg as described in [33], SMUCE as described in
[17] as well as PELT as described in [22]. We exclude the Bai and Perron procedure
[4] due to its extensive computation time, although some preliminary results show
that it works very well if the parameter h is chosen sufficiently small (which however
increases computation time even further). Furthermore, it should be mentioned that
PELT [22] yields much better results after the new version has been installed. For
the MOSUM method we include the two described merging algorithms with the same
bandwidths choices, where results are very similar. The change point estimates in the
plots indicated by vertical lines are obtained using the MOSUM method with a single
bandwidth choice, where the eta-criterion with η = 0.15 was used.

We will first look at the ’Mix’ signal, which has change points at 10,20,40,60,100,120,
160,200,250,300,360,420,490 with means 7,-7,6,-6,5,-5,. . . . Because the signal includes
large changes surrounded by small stationary stretches as well as small changes sur-
rounded by large stationary stretches no MOSUM procedure with a single bandwidth
can detect all changes. Figure 4.1 illustrates how different bandwidths detect different
changes. Frequent change points to be missed are the ones to the very left respec-
tively very right of the time series. As already indicated by [18] the signal is difficult
to detect for all methods. Table 4.1 gives the results for the two merged MOSUM
procedures and the WBS method only because the other competing procedures detect
the correct number of change points in less than 19% of the cases. The L1-error is the
sum of the absolute differences between true change point and corresponding estimator
hence measures the precision of the estimated locations.

Next, we look at a ’Teeth’ signal with a mean change every 10th observation switching
between 0 and 1 with i.i.d. normal errors with a standard deviation of 0.4. The changes
are relatively close so that only small bandwidths have a chance of detecting them.
Figure 4.2 shows the results for different bandwidth choices and α = 0.1 as well as
α = 0.5. The bandwidths G = 8 as well as G = 10 can well detect change points, while
G = 20 results in oversmoothing with insignificant results. In this example one can
clearly see the problems with the eta-criterion (3.1) which have already been described
in Section 3.5. This is the reason why α = 0.1 finds so little change points although
most peaks do cross the line (but only for one data point). A visual inspection, on the
other hand, can clearly distinguish between those scenarios and would usually find all
10 change points. The maximum-check is much closer to this visual inspection and
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q̂n − q 6 3 = 2 = 1 = 0 = 1 = 2 > 3
Merged MOSUM (bandwidth) 0.016 0.075 0.193 0.716 0 0 0

Merged MOSUM (p-value) 0.016 0.075 0.193 0.716 0 0 0
WBS 0.059 0.027 0.016 0.735 0.129 0.020 0.014

L1-error Median (mean) MAD (SD)
Merged MOSUM (bandwidth) 0 (0.55) 0 (0.93)

Merged MOSUM (p-value) 0 (0.55) 0 (0.93)
WBS 4 (4.48) 2.97 (3.12)

Table 4.2: Number of correctly estimated change points and L1-error for WBS and
merged MOSUM-procedure (with bandwidths G = {10, 25, 50, 60}) for the
’Teeth’ signal based on those realizations where both methods detect the
correct number of change points

therefore performs better in this example. Table 4.2 gives the results for the merged
MOSUM and WBS only as PELT, CumSeg and SMUCE detect the correct number
of changes in less than 10% of the cases, and Segmentor detects it in only 52% of the
cases. While WBS is slightly better in picking the correct number of change points the
location of the change point estimators are much more precise for the merged MOSUM
algorithms.

Finally, we look at the ’Stairs’ signal in [18] with change points at every 10th obser-
vation, mean values of 1, 2, 3, . . . and i.i.d. normal errors with a standard deviation of
0.3. Again a visual inspection of Figure 4.3 gives a clear picture, where the change
points are. However, there are several problems: The eta-check can again result in
missing change points, so that the maximum-check yields better results. Furthermore,
it happens (particularly for G = 10) that the graph remains above the critical value
at all times. By construction the original algorithm cannot deal with this, although
clearly significant points further apart than 2G cannot be caused by the same change
point, the implemented maximum-check on the other hand does not require the curve
to fall beneath the critical level in between estimated change points resulting in bet-
ter results. As already mentioned the maximum-check is closer to the visual check in
spirit. Table 4.3 gives the results for the merged MOSUM procedures with bandwidths
G = 8, 10, 20, 30, 50 in addition to the results of PELT, cumseg and WBS. SMUCE is
excluded because it only detects 7.3% of the changes. In this example detection rate
and accuracy of the estimators are very good for the merged MOSUM procedures.

The simulations for the fms and blocks signal in [18] show that both merging algorithms
tend to overestimate the number of change points with the set of bandwidths we used.
A possible solution could be the use of an information criterion as final pruning step
that has been discussed in Section 3.5.

The following additional simulations can be found in the supplementary material:

• Impact of the moving variance estimator,

• adaptations for mean changes accompanied by a variance change,

• connection between bandwidth, distance between changes and magnitude of
changes.

Conclusions: There are several advantages of the MOSUM procedure: First, it pro-
vides some meaningful graphs for visual inspection. Secondly, p-values are attached to
change point estimators with the usual interpretation at least for a given bandwidth.
Third, the correctly discovered MOSUM change point estimators are very precise.
Finally, we have demonstrated the potential of merged MOSUM algorithms, where
theoretic and practical details are left to be investigated in future work.
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4 Simulations

Figure 4.3: Two sample path and performance of σ̂−1
k,nTk,n(G) with bandwidths G = 8, 10,

20 and η = 0.15 for ’Stairs’-Signal, where critical values and detected change
points for α = 0.1 are indicated by vertical solid lines and for α = 0.5 by vertical
dotted lines. The horizontal lines give the asymptotic critical values for α = 0.1
(solid) and α = 0.5 (dotted).

q̂n − q 6 3 = 2 = 1 = 0 = 1 = 2 > 3
CumSeg 0.014 0.02 0.093 0.787 0.086 0 0

Merged MOSUM (bandwidth) 0 0.001 0.027 0.972 0 0 0
Merged MOSUM (p-value) 0 0.001 0.028 0.971 0 0 0

PELT 0.002 0.007 0.072 0.916 0.003 0 0
WBS 0 0 0.001 0.603 0.299 0.068 0.029

L1-error Median (mean) MAD (SD)
CumSeg 7 (7.56) 2.97 (2.9)

Merged MOSUM (bandwidth) 2 (1.881) 1.48 (1.52)
Merged MOSUM (p-value) 1 (1.03) 1.48 (1.26)

WBS 2 (2.18) 1.48 (1.75)
PELT 1 (1.68) 1.48 (1.55)

Table 4.3: Number of correctly estimated change points and L1-error for WBS and
merged MOSUM-procedure (with bandwidths G = {8, 10, 20, 30, 50}) for
the ’Stairs’ signal based on those realizations where all of those methods
detect the correct number of change points
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5 Proofs

5 Proofs

In this section we prove the results of the previous sections. More detailed proofs can
be found in [34].

5.1 Proofs of Section 2

Proof of Theorem 2.1. By the invariance principle in A.1 b) and (2.3) we get

max
G6k6n−G

1√
2Gτ2

∣∣∣∣∣
k+G∑
i=k+1

εi − (W (k +G)−W (k))

∣∣∣∣∣ = OP

(
n1/(2+ν)

√
2G

)
= oP

(
a(n/G)−1

)
.

Consequently, we can replace Xi/τ in the statistic by i.i.d. standard normal random
variables ε̃i without changing the asymptotics. The assertion then follows from The-
orem 2.1 in [21]. This implies

max
G6k6n−G

|Tk,n(G)| = OP (
√

log(n/G)) (5.1)

showing that we can replace τ by τ̂k,n without changing the asymptotics since by
assumption (2.5) it holds

max
G6k6n−G

∣∣∣∣ 1

τ̂k,n
− 1

τ

∣∣∣∣ = oP

(
(log(n/G))

−1
)
.

Part b) of the following lemma is essentially a corollary of Theorem 2.1, showing that
the statistic away from change points behaves exactly as under the null hypothesis,
while a) immediately implies consistency of the test under alternatives. Combined
they will be the key to proving consistency of the estimator for the number of changes
in the next section.

Lemma 5.1. Let the assumptions of Theorem 2.2 hold.

a) If

max
G6k6n−G

τ̂2
k,n = oP

(
min

j=1,...,qn
d2
j

log(n/G)G

c2αn

)
(5.2)

for some sequence {αn} with 0 < αn < 1, then for any ε > 0

P

 min
06|k−kj |<(1−ε)G

j=1,...,qn

|Tk,n(G)|
τ̂k,n

< Dn(G;αn)

 −→ 0,

where cαn , Dn(G;αn) as in (2.6).

b) If (as in Theorem 3.1)

max
|k−kj |>G,j=1,...,qn

|τ̂2
k,n − τ2| = oP

(
(log(n/G))−1

)
,

then it holds uniformly in α

P

 max
|k−kj |>G
j=1,...,qn

|Tk,n(G)|
τ̂k,n

> Dn(G;α)

 6 α.
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Proof. To obtain a), note that by assumption it is sufficient to prove the assertion
if additionally min06j6qn |kj+1 − kj | > 2G holds. In this case some calculations (for
details we refer to [34], proof of Theorem 6.1) give for 0 6 |k − kj | 6 (1− ε)G

Tk,n(G;X1, . . . , Xn) = Tk,n(G; ε1, . . . , εn) +
dj√
2G

(G− |k − kj |).

Hence, by (5.1)

min
06|k−kj |<(1−ε)G

|Tk,n(G)| = min
06|k−kj |<(1−ε)G

∣∣∣∣Tk,n(G; ε1, . . . , εn) +
dj (G− |k − kj |)√

2G

∣∣∣∣
>

min16j6qn |dj |√
2

ε
√
G− max

G6k6n−G
|Tk,n(G; ε1, . . . , εn)|

=
min16j6qn |dj |√

2
ε
√
G+OP (

√
log(n/G)).

We conclude

P

(
min

06|k−kj |<(1−ε)G

|Tk,n(G)|
τ̂k,n

< Dn(G,αn), min
16j6qn

|kj+1 − kj | > 2G, min
G6k6n−G

τ̂k,n > 0

)
6 P

((
min

16j6qn
|dj |
)−1

G−1/2

(
max

G6k6n−G
τ̂k,n

cαn + b(n/G)

a(n/G)
+OP

(√
log(n/G)

))
>

ε√
2

)
→ 0,

proving a). Assertion b) follows immediately from Theorem 2.1 on noting that on each
segment away from any kj , the MOSUM statistic as well as the variance estimator
behave exactly as under H0 due to Assumption A.1 a), where the convergence is
uniformly in α due to the continuity of the Gumbel limit distribution.

Proof of Theorem 2.2. It follows immediately from Lemma 5.1 a) on noting that
A.(4) b) implies (5.2) for fixed α resp. cα.

Proof of Theorem 2.3. First, we obtain

P

(
max

06k6n−G

∣∣∣∣∣ 1

G

Λn∑
h=0

ω(h/Λn)

k+G−h∑
i=k+1

(εiεi+h − γ(h))

∣∣∣∣∣ > ε

)

6
n−G∑
k=0

P

(∣∣∣∣∣
Λn∑
h=0

ω(h/Λn)

k+G−h∑
i=k+1

(εiεi+h − γ(h))

∣∣∣∣∣ > Gε

)

6
n

G2ε2

Λn∑
h=0

Λn∑
b=0

ω(h/Λn)ω(b/Λn)

G−h∑
i=1

G−b∑
j=1

E ((εiεi+h − γ(h)) (εjεj+b − γ(b)))

6
n

G2ε2

Λn∑
h=0

Λn∑
b=0

G−h∑
i=1

G−b∑
j=1

|ν (h, j − i, j − i+ b)| 6 C
nΛ2

n

G2ε2

by assumption (2.9). Consequently,

max
G6k6n−G

∣∣∣∣∣ 1

G

Λn∑
h=0

ω(h/Λn)

k−h∑
i=k−G+1

(εiεi+h − γ(h))

∣∣∣∣∣ = OP

(
n1/2Λn
G

)
. (5.3)

From Assumption A.1 b) and a Hájék-Rényi-inequality as in Lemma 3.1 for the Wiener
process we get

max
16k6n

∣∣∣∣∣
k∑
i=1

εi

∣∣∣∣∣ = OP (
√
n). (5.4)
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Since

max
G6k6n−G

|σ̂2
k,n − σ2|

6 max
06k6n−G

1

G

∣∣∣∣∣
k+G∑
i=k+1

(ε2
i − σ2)

∣∣∣∣∣+ max
06k6n−G

∣∣∣∣∣ 1

G

k+G∑
i=k+1

εi

∣∣∣∣∣
2

assertion a) follows from (5.3) (with Λn < 1) and (5.4).

Similarly,

max
G6k6n−G

|τ̂2
k,n − τ2| = max

G6k6n−G

∣∣∣∣∣σ̂2
k,n + 2

Λn∑
h=1

ω(h/Λn)γ̂k(h)− σ2 − 2
∑
h>0

γ(h)

∣∣∣∣∣
6 max
G6k6n−G

∣∣σ̂2
k,n − σ2

∣∣
+ max
G6k6n−G

∣∣∣∣∣
Λn∑
h=1

ω(h/Λn)
1

G

k−h∑
i=k−G+1

(εi − εk−G+1,k)(εi+h − εk−G+1,k)−
∑
h>0

γ(h)

∣∣∣∣∣
+ max
G6k6n−G

∣∣∣∣∣
Λn∑
h=1

ω(h/Λn)
1

G

k+G−h∑
i=k+1

(εi − εk+1,k+G)(εi+h − εk+1,k+G)−
∑
h>0

γ(h)

∣∣∣∣∣
6 OP

(
Λnn

1/2

G

)
+
∑
h∈Z
|w(h/Λn)− 1| |γ(h)|,

where we made repeated use of (5.4). This completes the proof of b).

Proof of Theorem 2.4. By assumption it holds

Xi −Xk−G+1,k = εi − εk−G+1,k +OP (1), i = k −G+ 1, . . . , k, (5.5)

where the rate is uniform in i, k,G. Hence by (a+ b)2 6 2a2 + 2b2 we get

sup
G6k6n−G

σ̂2
k,n 6 sup

G6k6n−G

1

G

(
k∑

i=k−G+1

(εi − εk−G+1,k)2 +

k+G∑
i=k+1

(εi − εk+1,k+G)2

)
+OP (1),

implying a) by Theorem 2.3. Similarly, by (5.5) and (5.4) we get

1

G

k+G−h∑
i=k+1

(Xi −Xk+1,k+G)(Xi+h −Xk+1,k+G)

=
1

G

k+G−h∑
i=k+1

(εi − εk+1,k+G +OP (1)) (εi+h − εk+1,k+G +OP (1))

=
1

G

k+G−h∑
i=k+1

(εi − εk+1,k+G) (εi+h − εk+1,k+G) +OP (1) +OP

(√
n

G

)
,

where the rates are uniform in k, h,G. With Theorem 2.3 we get

max
G6k6n−G

τ̂2
k,n = OP

(
Λnn

1/2

G

)
+OP (Λn) = OP (Λn)

concluding b).
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5.2 Proofs of Section 3

Proof of Theorem 3.1. First note that A.4 b) and (3.4) imply (5.2) so that by
Lemma 5.1, it holds P (Sn)→ 1 with

Sn =

{
max

|k−kj |>G,j=1,...,qn

|Tk,n(G)|
τ̂k,n

< Dn(G,αn), min
06|k−kj |<(1−η)G,j=1,...,qn

|Tk,n(G)|
τ̂k,n

> Dn(G,αn)

}
.

Since

Sn ⊂ {q̂n = qn},

Sn ⊂
{

max
16j6qn

|k̂j1{j6q̂n} − kj | 6 G

}
,

the assertion follows.

Proof of Lemma 3.1. By the triangle inequality and the monotony of the {ck} we
get

max
`6k6u

ck

∣∣∣∣∣∣
m+k∑
j=m+1

εj

∣∣∣∣∣∣ 6 c`

∣∣∣∣∣∣
m+∑̀
j=m+1

εj

∣∣∣∣∣∣+ max
`<k6u

ck

∣∣∣∣∣∣
m+k∑

j=m+`+1

εj

∣∣∣∣∣∣ ,
hence

P

 max
`6k6u

ck

∣∣∣∣∣∣
m+k∑
j=m+1

εj

∣∣∣∣∣∣ > δ


6 P

c`
∣∣∣∣∣∣
m+∑̀
j=m+1

εj

∣∣∣∣∣∣ > δ/2

+ P

 max
`<k6u

ck

∣∣∣∣∣∣
m+k∑

j=m+`+1

εj

∣∣∣∣∣∣ > δ/2

 .

An index shift in connection with the Chebyshev inequality and A.5 yields a) by
Theorem B.3 in [23]. Analogous arguments show b) on noting that Assumption A.1
c) also holds for the process in reversed time {ε−t}.

The following lemma is needed in the proofs of Theorems 3.2 as well as 3.3.

Lemma 5.2. Let the errors fulfill Assumptions A.1 a) and A.1 c). Then it holds for
any β > 0, ξ > 0 on 2G 6 kj 6 n− 2G

(a) P

(
max

kj−G6k6kj−ξ

∣∣Tkj ,n(G; ε1, . . . , εn)− Tk,n(G; ε1, . . . , εn)
∣∣

kj − k
> β

)
= O

((
β2Gξ

)−γ/2)
,

(b) P

(
max

kj−u6k6kj

∣∣Tkj ,n(G; ε1, . . . , εn)− Tk,n(G; ε1, . . . , εn)
∣∣ > β

)
= O

(
β−γ

( u
G

)γ/2)
,

(c) P

(
max

kj−G6k6kj−ξ

∣∣Tkj ,n(G; ε1, . . . , εn) + Tk,n(G; ε1, . . . , εn)
∣∣ > β

)
= O

(
β−γ

)
,

where the constants only depend on C̃ and γ.

Proof of Lemma 5.2. ForG 6 kj−G 6 k 6 kj−ξ some straightforward calculations
(confer [34] (6.13)) give

Tkj ,n(G; ε1, . . . , εn)− Tk,n(G; ε1, . . . , εn)

=
1√
2G

 kj+G∑
i=k+G+1

εi +

kj−G∑
i=k−G+1

εi − 2

kj∑
i=k+1

εi

 . (5.6)
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Hence

P

(
max

kj−G6k6kj−ξ

∣∣Tkj ,n(G; ε1, . . . , εn)− Tk,n(G; ε1, . . . , εn)
∣∣

kj − k
> β

)

6 P

 max
kj−G6k6kj−ξ

∣∣∣∑kj+G
i=k+G+1 εi

∣∣∣
kj − k

>
β
√

2G

3

+ P

 max
kj−G6k6kj−ξ

∣∣∣∑kj−G
i=k−G+1 εi

∣∣∣
kj − k

>
β
√

2G

3


+ P

 max
kj−G6k6kj−ξ

∣∣∣∑kj
i=k+1 εi

∣∣∣
kj − k

>
β
√

2G

3

 .

By Lemma 3.1 and the independence of kj and ε1, . . . , εn it follows for the first sum-
mand, where the others can be dealt with analogously,

P

(
max

kj−G6k6kj−ξ

∣∣∣∣∣
∑kj+G
i=k+G+1 εi

kj − k

∣∣∣∣∣ > β
√

2G

3

)
6 C̃β−γG−γ/2

ξ−γ/2 +

G∑
k=ξ+1

k−γ/2−1


= O

((
β2Gξ

)−γ/2)
,

where O(1) only depends on C̃ and γ. The proof of b) is analogous (with ck = 1 in
Lemma 3.1). Since

Tkj ,n(G; ε1, . . . , εn) + Tk,n(G; ε1, . . . , εn)

= (Tk,n(G; ε1, . . . , εn)− Tkj ,n(G; ε1, . . . , εn)) + 2Tkj ,n(G; ε1, . . . , εn),

c) can be proven analogously, where the assertion for the first summand on the right
hand side follows from b) and the second summand can be dealt with analogously by
an application of the Chebyshev inequality in addition to Assumption A.1 c).

Proof of Theorem 3.2. We will prove

P
(
k̂j > kj + ξn

)
= O(1) δ−γn

(
ξ
− γ2
n +G−

γ
2

)
+ o(1),

P
(
k̂j < kj − ξn

)
= O(1) δ−γn

(
ξ
− γ2
n +G−

γ
2

)
+ o(1),

where we discuss the second assertion in detail, the first one follows analogously (where
an analogous version of Lemma 5.2 is needed). Consider the set

Mn ={q̂n = qn , max
16j6qn

|k̂j − kj | < G , τ̂n > 0}

∩
{

min
j=1,...,qn

|dj | > δn, min
j=1,...,qn

|kj+1 − kj | > 2G

}
, (5.7)

which does not depend on j. Define w̃j := min(wj , kj +G− 1) and ṽj := max(vj , kj −
G+ 1), then it holds on Mn for all j = 1, . . . , qn

k̂j = arg max
ṽj6k6w̃j

|Tk,n(G)|.

Next, note that

arg max
ṽj6k6w̃j

|Tk,n(G)| = arg max
ṽj6k6w̃j

V
(j)
k,n(G), V

(j)
k,n(G) = (Tk,n(G))

2 −
(
Tkj ,n(G)

)2
.

Hence,

P

(
arg max

ṽj6k6w̃j
V

(j)
k,n(G) < kj − ξn

)
= P

(
max

ṽj6k6kj−ξn
V

(j)
k,n(G) > max

kj−ξn6k6w̃j
V

(j)
k,n(G)

)
6 P

(
max

ṽj6k6kj−ξn
V

(j)
k,n(G) > 0

)
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The additional term o(1) in a) represents P (MC
n ) → 0 by Theorem 3.1 and assump-

tions. Next, for kj −G 6 k 6 kj − ξn,

V
(j)
k,n(G) = (Tk,n(G))2 − (Tkj ,n(G))2 = (Tk,n(G)− Tkj ,n(G))(Tk,n(G) + Tkj ,n(G))

= −
((
Tkj ,n(G; ε1, . . . , εn)− Tk,n(G; ε1, . . . , εn)

)
+ (2G)−

1
2 (kj − k)dj

)
·
((
Tkj ,n(G; ε1, . . . , εn) + Tk,n(G; ε1, . . . , εn)

)
+ (2G)−

1
2 (k + 2G− kj)dj

)
=: −(A1(k, n) +D1(k, n))(A2(k, n) +D2(k, n)). (5.8)

Since on Mn it holds D1(k, n)/dj > (2G)−1/2(kj − k) and D2(k, n)/dj > 2−1/2G1/2,
we get D1(k, n)D2(k, n) > δ2

nξn/2 > 0. Hence

P

(
max

kj−G6k6kj−ξn
V

(j)
k,n(G) > 0,Mn

)
= P

(
max

kj−G6k6kj−ξn
−D1(k, n)D2(k, n)

(
1 +

A1(k, n)

D1(k, n)

A2(k, n)

D2(k, n)
+
A1(k, n)

D1(k, n)
+
A2(k, n)

D2(k, n)

)
> 0,Mn

)
6 P

(
max

kj−G6k6kj−ξn

∣∣∣∣A1(k, n)

D1(k, n)

A2(k, n)

D2(k, n)
+
A1(k, n)

D1(k, n)
+
A2(k, n)

D2(k, n)

∣∣∣∣ > 1,Mn

)
6 P

(
max

kj−G6k6kj−ξn

∣∣∣∣A1(k, n)

D1(k, n)

∣∣∣∣ max
kj−G6k6kj−ξn

∣∣∣∣A2(k, n)

D2(k, n)

∣∣∣∣+ max
kj−G6k6kj−ξn

∣∣∣∣A1(k, n)

D1(k, n)

∣∣∣∣
+ max
kj−G6k6kj−ξn

∣∣∣∣A2(k, n)

D2(k, n)

∣∣∣∣ > 1,Mn

)
6 P

(
max

kj−G6k6kj−ξn

∣∣∣∣A1(k, n)

kj − k

∣∣∣∣ > δn

3
√

2G

)
+ P

(
max

kj−G6k6kj−ξn
|A2(k, n)| > δn

√
G

3
√

2

)

+P

(
max

kj−G6k6kj−ξn

∣∣∣∣A1(k, n)

kj − k

∣∣∣∣ > δn√
6G

)
P

(
max

kj−G6k6kj−ξn
|A2(k, n)| > δn

√
G√

6

)
= O(1) δ−γn

(
ξ
− γ2
n +G−

γ
2

)
,

where the last line follows from Lemma 5.2 and O(1) does not depend on j. This
concludes the proof of a) by ξn 6 G. Similarly, on the set

M̃n = Mn ∩ {qn 6 γn} (5.9)

we get

P

(
max

j=1,...,min(q̂n,qn)
|k̂j − kj | > ξn , M̃n

)
6

γn∑
j=1

P
(
|k̂j1{j6min(q̂n,qn)} − kj | > ξn, M̃n

)
= O(1) γn δ

−γ
n

(
ξ
− γ2
n +G−

γ
2

)
,

where the last line follows from the proof of a). Since P (M̃n) → 1, the proof of b) is
complete.

Before we can get to the proof of the corollary, we first need to refine the assertions
on the variance estimator σ̂2

k,n from Section 2.3:

Lemma 5.3. Let the assumptions of Corollary 3.1 be fulfilled. Then it holds

(a) P

(
min

06|k−kj |6G
σ̂2
k,n > C

)
→ 1 for some c > 0.

(b) 2G
σ̂2
k,n − σ̂2

kj ,n

|kj − k|
= d2

j

G− |k − kj |
G

+Rk(j),

where max
ξn6|k−kj |6G

|Rk(j)| = OP (ξ−1/2
n ) + oP (1).
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Proof. Some calculations show that for k 6 kj

σ̂2
k,n =

d2
j

2G
|kj − k|

G− |k − kj |
G

+
1

2G

k+G∑
i=k−G+1

ε2
i −

1

2

(
ε̄2
k−G+1,k + ε̄2

k+1,k+G

)
− dj

1

G

kj∑
i=k+1

εi + dj
kj − k
G

ε̄k+1,k+G.

From this, assertion (a) follows (symmetry arguments give the result for k > kj). For
(b) note that this implies (for kj −G 6 k < kj)

2G
σ̂2
k,n − σ̂2

kj ,n

kj − k
= d2

j

G− |k − kj |
G

+
1

kj − k

kj∑
i=k−G+1

(
ε2
i − σ2

)
− 1

kj − k

kj+G∑
i=k+G+1

(
ε2
i − σ2

)
+

1

kj − k

 kj−G∑
i=k−G+1

εi −
kj∑

i=k+1

εi

 (ε̄k−G+1,k + ε̄kj−G+1,kj )

+
1

kj − k

 kj∑
i=k+1

εi −
kj+G∑

i=k+G+1

εi

 (ε̄k+1,k+G + ε̄kj+1,kj+G)

− 2dj
1

kj − k

kj∑
j=k+1

εi + 2dj ε̄k+1,k+G

= d2
j

|k − kj |+G

G
+Rk(j, 1) + . . .+Rk(j, 6).

An application of the Hájek-Rényi inequality yields

max
ξn6kj−k6G

|Rk(j, l)| = OP (ξ−1/2
n ) for l = 1, 2, 5

as well as the first factor in Rk(j, 3) and Rk(j, 4). Furthermore, by another appli-
cation of the Hájek-Rényi inequality (or the strong law of large numbers) we get
max|k−kj |6G |ε̄k+1,k+G| = oP (1) resulting in

max
ξn6kj−k6G

|Rk(j, l)| = oP (1) for l = 6.

An analogous argument applies to the second factor in Rk(j, 3) as well as Rk(j, 4),
yielding assertion (b), where the assertion for k > kj follows by symmetry arguments.

Proof of Corollary 3.1. The proof is very close to the proof of Theorem 3.2 on

replacing V
(j)
k,n(G) by

Ṽ
(j)
k,n =

T 2
k,n

σ̂2
k

−
T 2
kj ,n

σ̂2
kj

with the following decomposition (σ̂k = σ̂k,n)

Ṽ
(j)
k,n = −(Ã1(k, n) + D̃1(k, n))(Ã2(k, n) + D̃2(k, n)),

where

Ã1(k, n) =
A1(k, n)

σ̂k
+ Ã1,2(k, n), Ã1,2(k, n) = Tkj ,n(G; ε1, . . . , εn)

(
1

σ̂kj
− 1

σ̂k

)
,

Ã2(k, n) =
A2(k, n)

σ̂k
+ Ã1,2(k, n),
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D̃1(k, n)/dj =
1√
2G

kj − k
σ̂k

+

√
G

2

(
1

σ̂kj
− 1

σ̂k

)
=
D1(k, n)

dj

(
1

σ̂k
+

1

σ̂kj σ̂k(σ̂kj + σ̂k)
G
σ̂2
k − σ̂2

kj

kj − k

)
=:

D1(k, n)

dj
D̃1,2(k, n)

D̃2(k, n)/dj =
1√
2G

(
G

σ̂kj
+
G+ k − kj

σ̂k

)
.

Consider the set

Sn =

{
min

ξn6kj−k6G
D̃1,2(k,m) > c1

}
∩
{

max
k

σ̂k 6 c2

}
∩
{

min
06|kj−k|6G

σ̂k > c3

}
.

By Lemma 5.3 and Theorem 2.4 it holds P (Sn) → 1 for suitable constants ci > 0,
i = 1, 2, 3, and ξn > ξ0 for some ξ0 > 0. Furthermore on Sn it holds (where c is a
generic constant which may differ from line to line)

D̃1(k, n)

dj
> c

D1(k, n)

dj
,

D̃2(k, n)

dj
> c
√
G,

|Aj(k, n)|
σ̂k

6
|Aj(k, n)|

c
, j = 1, 2.

Finally, on Sn it holds

max
ξn6kj−k6G

∣∣∣∣∣ Ã1,2(k, n)

D̃1(k, n)

∣∣∣∣∣ 6 c
1√
d2
jG

∣∣Tkj ,n(G; ε1, . . . , εn)
∣∣ 2G max

ξn6kj−k6G

∣∣∣σ̂2
k − σ̂2

kj

∣∣∣
|kj − k|

= OP

 1√
d2
jG

 = oP (1)

by an application of Lemma 5.3 and the central limit theorem. Similarly,

max
ξn6kj−k6G

∣∣∣∣∣ Ã1,2(k, n)

D̃2(k, n)

∣∣∣∣∣ = oP (1).

On the set Sn the proof can now be completed as the proof of Theorem 3.2.

Proof of Theorem 3.3. The decomposition (5.8) yields for k < kj

V
(j)
k,n(G) = −D1(k, n)D2(k, n)−A1(k, n)D2(k, n)−A2(k, n)D1(k, n)−A1(k, n)A2(k, n).

By A.1 a) an application of Lemma 5.2 conditionally on dj in addition to an application
of the dominated convergence theorem to get the unconditional statement yields on
the set Mn as in (5.7) that

max
16kj−k6cτ2d−2

j

|A1(k, n)| = oP (1), max
16kj−k6cτ2d−2

j

|A2(k, n)| = OP (1).

Since max16kj−k6cτ2d−2
j
|D1(k, n)| = oP (1) we get on Mn uniformly in 1 6 kj − k 6

cτ2d−2
j

V
(j)
k,n(G) = − 1

2G
|kj − k|(2G− |kj − k|)d2

j

−(Tkj ,n(G; ε1, . . . , εn)− Tk,n(G; ε1, . . . , εn))(2G− |kj − k|)
1√
2G

dj + oP (1)

= −|kj − k| d2
j − dj

 kj+G∑
i=k+G+1

εi +

kj−G∑
i=k−G+1

εi − 2

kj∑
i=k+1

εi

+ oP (1).
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By stationarity and A.1 a) we getdj
 kj+G∑
i=k+G+1

εi +

kj−G∑
i=k−G+1

εi − 2

kj∑
i=k+1

εi

 : k = kj − 1, . . . , kj − cτ2d−2
j


D
=

{
Un(l) = dj

(
G∑

i=−l+G+1

εi +

−G∑
i=−l−G+1

εi − 2

0∑
i=−l+1

εi

)
: 1 6 l 6 cτ2d−2

j

}
.

Note that by the assumption on dj and A.5 the three summands are asymptotically

independent. Hence by dj
P−→ 0 and A.1 a) the functional central limit theorem

implies{
Un(bsτ2d−2

j c)
τ2

: 0 6 s 6 c

}
D[0,1]−→ {

√
6W (s), 0 6 s 6 c},

because {W1(s) +W2(s)− 2W3(s)} D= {−
√

6W (s)} for independent standard Wiener
processes {Wj(·)}, j = 1, 2, 3 and another standard Wiener process {W (·)}. More
precisely, we first apply the functional central limit theorem given dj and then get the
unconditional assertion above by an application of the dominated convergence theorem.
Similar arguments hold for kj > k, which implies by P (Mn)→ 1 for −c 6 x 6 c

P

(
−c 6 d2

j

k̂j1{j6q̂n} − kj
τ2

6 x

)

→ P

(
max
−c6s6x

(
−|s| −

√
6W (s)

)
> max
x<s6c

(
−|s| −

√
6W (s)

))
= P

(
−c 6 arg max

−c6s6c

(
W (s)− |s|/

√
6
)
6 x

)
,

By Theorem 3.2 and Remark 3.1 a) we get

P

(
d2
j

|k̂j − kj |
τ2

6 c

)
6
(
c−γ/2 +G−γ/2

)
O(1) + o(1)

uniformly in n, which becomes arbitrarily small for c large enough. Hence, letting
c→∞ gives assertion a). Assertion b) follows because on

{q̂n = q} ∩
qn⋂
j=1

{
d2
j

|k̂j − kj |
τ2

6 c

}

the change point estimators k̂j , j = 1, . . . , n, are asymptotically independent (condi-
tionally on kj , dj , j = 1, . . . , qn) by Assumption A.5. Because the above convergence
also holds conditionally, this implies b) by using the dominated convergence theorem
in the very last step.

Proof of Theorem 3.4. Without loss of generality we can assume that σ = 1.
Let tk,n(G) = 1√

2G

∑qn
j=1(G− |kj − k|)dj1{|kj−k|<G} be the value of the statistic if

only the signal µ1 +
∑qn
j=1 dj1{i>kj} (without noise) is input into the statistic Tk,n(G).

Analogously to Lemma A.1 in [18] it holds

P

(
max

G6k6n−G
|Tk,n(G)− tk,n(G)| >

√
4 log n

)
6
n−G∑
k=G

P
(
|Z| >

√
4 log n

)
6 n

ϕZ(
√

4 log n)√
4 log n

6
C

2n
,
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where Z ∼ N(0, 1) and ϕZ is its density. From this it follows that

P

(
max

|k−kj |>G,j=1,...,qn
|Tk,n(G)| < cn

)
> 1− C

2n

as max|k−kj |>G,j=1,...,qn |tk,n(G)| = 0 because the distance between two change points

is always greater than 2G and cn >
√

4 log n. Furthermore,

P

(
min

06|k−kj |<(1−η)G,j=1,...,qn
|Tk,n(G)| > cn

)
> P

(
min

06|k−kj |<(1−η)G,j=1,...,qn
|tk,n(G)| − max

06|k−kj |<(1−η)G,j=1,...,qn
|Tk,n(G)− tk,n(G)| > cn

)
> 1− P

(
max

06|k−kj |<(1−η)G,j=1,...,qn
|Tk,n(G)− tk,n(G)| >

√
4 log n

)
> 1− C

2n

as min06|k−kj |<(1−η)G,j=1,...,qn |tk,n(G)| > η
√
Gδn/

√
2 > cn +

√
4 log n.

The proof of a) can now be concluded as in the proof of Theorem 3.1, while b) can be
concluded as in the proof of Theorem 3.2.
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68(2):252–282, 2006.

[10] Chia-Shang Chu, Kurt Hornik, and Chung-Ming Kaun. MOSUM tests for pa-
rameter constancy. Biometrika, 82(3):603–617, 1995.
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Abstract

We correct a mistake in the proof and consequently statement of Theorem 2.3 in
[1], where in b) the bound Λnn

1/2/G must be replaced by max(Λ
1/2
n , logn)

√
Λn n/G.

1 Moving variance and long-run variance estimators

Consider the following moving estimator for the long-run covariance:

τ̂2
k,n := γ̂k(0) + 2

Λn∑
h=1

ω(h/Λn)γ̂k(h)

with autocovariance estimator

γ̂k(h) :=
1

2G

k−h∑
i=k−G+1

(Xi −Xk−G+1,k)(Xi+h −Xk−G+1,k)

+
1

2G

k+G−h∑
i=k+1

(Xi −Xk+1,k+G)(Xi+h −Xk+1,k+G),

bandwidth Λn > 1 and suitable weights ω, such as, for example, Bartlett or flat-top
weights. For independent errors, we get a moving variance estimator by σ̂2

k,n = γ̂k(0).

For convenience, we repeat the (corrected) statement of Theorem 2.3 b) in [1].

Theorem 1.1. Let Xi = µ+ εi, i = 1, . . . , n, {εi} with E |εi|4 <∞,

sup
h∈Z

∑
k∈Z

∑
l∈Z
|ν(h, k, l)| <∞, (1.1)

where ν(h, r, s) = cov(ε1ε1+h, ε1+rε1+s) and max16k6n

∣∣∣∑k
i=1 εi

∣∣∣ = OP (
√
n), which

follows for example under Assumption A.1 b) in [1]. Then it holds:

1



2 Corrected Proof of the Statement

a) If n/G2 = O(1), we get

max
G6k6n−G

|σ̂2
k,n − σ2| = OP

(
n1/2

G

)
.

b) If Λnn/G
2 = O(1) and the weights fulfill 0 6 w(x) 6 C, then

max
G6k6n−G

|τ̂2
k,n − τ2| = OP

(
max(log n,Λ1/2

n )

√
Λnn

G
+ rn

)
.

where

rn =
∑
h∈Z
|w(h/Λn)− 1| |γ(h)|.

Remark 1.1. As a consequence in Theorem 2.4 b) in [1] b) holds if n log2 n
G2 = O(1)

(which is related to (2.3) in [1]).

2 Corrected Proof of the Statement

The correction of the proof makes use of the following maximal inequality, which
holds for any sequence of square integrable random variables Yi, i = 1, . . . , n, and
is a direct consequence of the generalization of the Rademacher-Menchoff maximal
inequality given by Serfling [2]. The proof (of a slightly stronger statement replacing
the absolute value on the right hand side by (·)+) can be found in [3], Lemma 2.2:

E

 max
16k6n

∣∣∣∣∣
k∑
i=1

Yi

∣∣∣∣∣
2
 6

(
log 2n

log 2

)2
 n∑
i=1

EY 2
i + 2

n−1∑
i=1

n∑
j=i+1

|EYiYj |

 . (2.1)

Proof of Theorem 1.1. The last inequality in the first sequence of inequalities in
the proof of Theorem 2.3 in [1] is not correct. In fact, by those argument only the
statement 6 C nΛn

Gε2 can be obtained, which is too weak for the purpose of that paper.
However, the methodology is sufficient to achieve the statement in (2.2) below.

First, note that by Kolmogorovs inequality (i.e. the Hájek -Renyi inequality with
constant weights) it follows in the situation of (a), i.e. for independent errors,

max
06k6n−G

1

G

∣∣∣∣∣
k+G∑
i=k+1

(ε2
i − σ2)

∣∣∣∣∣ 6 2

G
max

06k6n

∣∣∣∣∣
k∑
i=1

(ε2
i − σ2)

∣∣∣∣∣ = OP

(√
n

G

)
,

so that the proof can be concluded as in [1].

For b) it holds

max
06k6n−G

∣∣∣∣∣ 1

G

Λn∑
h=0

ω(h/Λn)

k+G−Λn∑
i=k+1

(εiεi+h − γ(h))

∣∣∣∣∣
6

2

G
max

16k6n−Λn

∣∣∣∣∣
k∑
i=1

Λn∑
h=0

ω(h/Λn) (εiεi+h − γ(h))

∣∣∣∣∣ = OP

(
log n

√
Λn n

G

)
,

2
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where the rate follows from Markovs inequality in combination with (2.1) by putting

Zi,n =
∑Λn

h=0 ω(h/Λn) (εiεi+h − γ(h)). To elaborate:

E max
16k6n−Λn

∣∣∣∣∣
k∑
i=1

Zi,n

∣∣∣∣∣
2

6 C(log n)2

[
n−Λn∑
i=1

∑
h

∑
b

|E (εiεi+h − γ(h)) (εiεi+b − γ(b))|

+

n−Λn−1∑
i=1

n−Λn∑
j=i+1

∑
h

∑
b

|E (εiεi+h − γ(h)) (εjεj+b − γ(b))|


6 C(log n)2

n−1∑
i=1

n∑
j=i

∑
h

∑
b

|ν(h, j − i, j − i+ b)| 6 C(log n)2 nΛn sup
h

∑
k

∑
l

|ν(h, k, l)|

6 C(log n)2 nΛn,

where C is a generic constant that can differ at every occurence. Furthermore, along
the lines of the original proof as given in [1], we get

max
06k6n−G

∣∣∣∣∣ 1

G

Λn−1∑
h=0

ω(h/Λn)

k+G−h∑
i=k+G−Λn+1

(εiεi+h − γ(h))

∣∣∣∣∣ = OP

(
Λn
√
n

G

)
. (2.2)

The proof can now be concluded as in [1].
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