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Abstract

We correct a mistake in the proof and consequently statement of Theorem 2.3 in
[0, where in b) the bound A,n'/?/G must be replaced by max (A%, logn) VA, n/G.

1 Moving variance and long-run variance estimators

Consider the following moving estimator for the long-run covariance:
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bandwidth A, > 1 and suitable weights w, such as, for example, Bartlett or flat-top
weights. For independent errors, we get a moving variance estimator by 6%7n = 9, (0).

For convenience, we repeat the (corrected) statement of Theorem 2.3 b) in [I].
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follows for example under Assumption A.1b) in [1]. Then it holds:



2 Corrected Proof of the Statement

a) If n/G? = O(1), we get
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b) If A,n/G? = O(1) and the weights fulfill 0 < w(z) < C, then

S R TR 1/2 VA
Ggrl?gf—chk’" 7 Op (max(logn,An ) e +rn).
where
ro = 3 lw(h/A) = 1|y (h)]
heZ

Remark 1.1. As a consequence in Theorem 2.4 b) in [I] b) holds if "loGg;" =0(1)
(which is related to (2.3) in [I]).

2 Corrected Proof of the Statement

The correction of the proof makes use of the following maximal inequality, which
holds for any sequence of square integrable random variables Y;, ¢ = 1,...,n, and
is a direct consequence of the generalization of the Rademacher-Menchoff maximal
inequality given by Serfling [2]. The proof (of a slightly stronger statement replacing
the absolute value on the right hand side by (-)4) can be found in [3], Lemma 2.2:
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Proof of Theorem The last inequality in the first sequence of inequalities in
the proof of Theorem 2.3 in [I] is not correct. In fact, by those argument only the
statement < C’”A62 can be obtained, which is too weak for the purpose of that paper.
However, the methodology is sufficient to achieve the statement in ) below.

First, note that by Kolmogorovs inequality (i.e. the Héjek -Renyi inequality with
constant weights) it follows in the situation of (a), i.e. for independent errors,
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so that the proof can be concluded as in [IJ.

For b) it holds
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where the rate follows from Markovs inequality in combination with (2.1)) by putting
Zin = 2220 w(h/Ay) (gigipn — y(h)). To elaborate:
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where C is a generic constant that can differ at every occurence. Furthermore, along
the lines of the original proof as given in [1], we get

1 A,—1 k+G—h A \/ﬁ
s |23 WA DD (e = ()| = Op (G) (22)
h=0 i=k+G—A,+1

The proof can now be concluded as in [I]. =
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