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Detection of change points in

discrete-valued time series

Claudia Kirch, Joseph Tadjuidje Kamgaing

1.1 Introduction

Fitting reasonable models to time series data is a very important task leading to meaningful

statistical inference such as prediction. However, there is always the possibility that the

best describing model or the best fitting parameter changes at some unknown point in time

rendering any statistical analysis meaningless that does not take this fact into account.

Consequently, it is an important question in time series analysis how to detect and estimate

such change points.

There are two types of change point procedures: Offline or retrospect procedures which

analyse a data set for changes after it has been fully observed on the one hand and sequen-

tial or monitoring schemes which analyse data as it arrives on the other hand. In sequential

change point analysis classical monitoring charts such as EWMA (exponentially weighted
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2 CHAPTER 1. DETECTION OF CHANGE POINTS

moving average) or CUSUM (cumulative sum) check for changes in a parametric model with

known parameters. Unlike in classical statistical testing it is not the size that is controlled

under the null hypothesis but the average run length which should be larger than a pre-

specified value. On the other hand if a change occurs an alarm should be raised as soon as

possible afterwards. For first order integer-valued autoregressive processes of Poisson counts

CUSUM charts have been investigated by Weiß and Testik [25] as well as Yontay et al. [27]

and the EWMA chart by Weiß [24]. A different approach was proposed by Chu et al. [1]

in the context of linear regression models which controls asymptotically the size and at the

same time tests for changes in a specific model with unknown in-control parameters. If a

change occurs this procedure will eventually reject the null hypothesis. In their setting a his-

toric data set with no change is used to estimate the in-control parameters before beginning

to monitor new incoming observations. Such a data set usually exists in practice as some

data needs to be raised before any reasonable model building or estimation for statistical

inference can take place. Asymptotic considerations based on the length of this data set

are then used to calibrate the procedure. Kirch and Tadjuidje Kamgaing [15] generalize the

approach of Chu et al. [1] to using estimating functions in a similar spirit as described in

Section 1.2 below for the offline procedure. Examples include integer-valued time series as

considered here.

In this paper, we focus on offline change point detection for integer valued time series.

This has been considered by Hudeková [11] as well as Fokianos et al. [7] for binary time series

models as well as Franke et al. [9] and Doukhan and Kegne [3] for Poisson autoregressive

models. Related procedures have also been investigated by Fokianos and Fried [5, 6] for

INGARCH respectively log-linear Poisson autoregressive time series but with a focus on

outlier detection and intervention effects rather than change points. In order to unify the

methodology used in these papers, we will first review standard change point techniques not

restricted to the integer valued case in Section 1.2. We will establish standard asymptotic

theory under both the null hypothesis as well as alternatives using regularity conditions which

to the best of our knowledge has not been done in the literature before. These regularity

conditions will then allow us to restate and even generalize the existing methods in the

literature both under the null hypothesis as well as under alternatives for binary time series

in Section 1.3 as well as Poisson autoregressive models in Section 1.4. In Section 1.5 some
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simulations as well as applications to real data illustrate the performance of these procedures.

Finally, the proofs are given in an appendix.

1.2 General principles of retrospective change point analysis

In this section, we consider retrospective change point tests, where the full data set Y1, . . . , Yn

is observed before a decision about a possible change point is made. Under the null hypothesis

of no change the likelihood function is completely parametrized by a (partially) unknown

parameter θ0 ∈ Θ ⊂ Rd. Under the alternative of exactly one change (AMOC - at most one

change - situation), there exists 1 < k0 < n such that Y1, . . . , Yk0 is parametrized by the same

parameter θ0, hence has analogous likelihood function L ((Y1, . . . , Yk0), θ0) but Yk0+1, . . . , Yn

is parametrized by a different parameter θ1 ̸= θ0 but the same likelihood structure, i.e. with

likelihood function L((Yk0+1, . . . , Yn), θ1). In this situation k0 is called the change point and

assumed not to be known. If k0 were known, this would amount to a simpler two-sample

situation. We will now first explain general construction principles for change point tests

in this situation: To this end, consider first the simpler two-sample situation, where k0 is

known. Then a likelihood ratio approach yields the following statistic

ℓ(k) := ℓ((Y1, . . . , Yn), θ̂n)− ℓ((Y1, . . . , Yk), θ̂k)− ℓ((Yk+1, . . . , Yn), θ̂
◦
k),

where ℓ(Y, θ) is the log-likelihood function, θ̂k and θ̂◦k are the maximum likelihood estimator

based on Y1, . . . , Yk respectively on Yk+1, . . . , Yn. In the change point situation, the change-

point k0 is not known, therefore standard statistics either use weighted sums (sum-type

statistics) or weighted maxima (max-type-statistics) of ℓ(k), k = 1, . . . , n. Similarly, one can

construct Wald-type-statistics based on quadratic forms of

W (k) := θ̂k − θ̂◦k, k = 1, . . . , n,
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or score-type statistics based on quadratic forms of the scores

S(k) := S(k, θ̂n) =
∂

∂θ
ℓ ((Y1, . . . , Yk), θ) |θ=θ̂n

, k = 1, . . . , n.

Wald and Score-type-statistics can obviously also be constructed based on different estima-

tion methods such as (weighted) least-squares or M-estimators, where reasons to do so can

range from computational considerations to robustness issues. In non-linear situations, which

are typically encountered for integer-valued time series, estimators such as the maximum-

likelihood-estimator are usually not analytically known but need to be calculated using

numerical optimization methods leading to both additional computational effort to calculate

the statistics as well as an additional error due to the numerical error. The latter problems

can be reduced by using score-type-statistics as in this case only the estimator based on the

full data set Y1, . . . , Yn needs to be calculated while otherwise θ̂k as well as θ̂◦k need to be

calculated for every k = 1, . . . , n with all the problems this entails.

In order to understand where typical weights used in connection with scores come from, it

is helpful to take a look at the classical linear autoregressive process of order p with standard

normal errors, i.e. where

Yt = β0 +

p∑
j=1

βjYt−j + εt, εt
i.i.d.∼ N(0, 1).

In this case, some tedious calculations show that the following relation holds (exactly not

only asymptotically)

2ℓ(k) = W (k)TCkC
−1
n C◦

kW (k) = S(k)TC−1
k Cn (C

◦
k)

−1 S(k),

where Ck =
k∑

t=1

Yt−1YT
t−1, C◦

k =
n∑

t=k+1

Yt−1YT
t−1, Yt−1 = (1, Yt−1, . . . , Yt−p)

T .

It turns out that the maximum over these statistics which corresponds to the maximum

likelihood statistic does not converge in distribution to a non degenerate limit but almost

surely to infinity. In the simple mean-change-model (where p = 0, S(k) =
∑k

j=1(Yj − Ȳn),

Ck = k and C◦
k = n − k) this follows from the law of iterated logarithm. Nevertheless
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asymptotic level α tests based on this maximum likelihood statistic can be constructed

using a Darling-Erdős limit theorem as stated in Theorem 1.2.1 b) below. In small samples,

however, the slow convergence of Darling-Erdőes limit theorems often leads to some size

distortions. In order to overcome this problem, the following modified class of statistics has

been proposed in the literature

max
16k6n

w(k/n)

n
S(k)TC−1

n S(k),

where w : [0, 1] → R+ is a non-negative continuous weight function fulfilling

lim
t→0

tαw(t) < ∞, lim
t→1

(1− t)αw(t) < ∞ for some 0 6 α < 1

sup
η6t61−η

w(t) < ∞ for all 0 < η 6 1/2. (1.2.1)

Theorem 1.2.1 a) below shows that this class of statistics converges, under regularity con-

ditions, in distribution to a non-degenerate limit. Under the null hypothesis the weights,

implicit in the maximum likelihood statistics, can be approximated asymptotically (as k →
∞,n− k → ∞, n → ∞) by

C−1
k Cn(C

◦
k)

−1 =
n

k(n− k)
C−1 + oP (1), C = EYt−1YT

t−1.

For this reason, the following choice of weight function has often been proposed in the

literature

w(t) = (t(1− t))−γ, 0 6 γ < 1,

where a γ close to 1 detect early or late changes with better power. Similarly, if a priori

information about the location of the change point is available one can increase power for

such alternatives by choosing a weight function that is maximal around those points while

still having asymptotic power one for other change locations (confer Theorem 1.2.2 below

for the second statement).

Now, we need certain regularity conditions under which we will derive the asymptotic
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distribution for score-type change point statistics under the null hypothesis in Theorem 1.2.1

below. Further regularity conditions under alternatives guarantee that the corresponding

tests have asymptotic power one. These regularity conditions are neither limited to likelihood

scores nor to particular time series models and will be used in the subsequent sections to

get the null asymptotics of the partial likelihood score statistics for binary time series in

Section 1.3 as well as the least-squares score statistics for Poisson autoregressive models in

Section 1.4.

While the techniques used in the proofs are quite common in change point analysis such

regularity conditions have never been isolated to the best of our knowledge.

A. 1. Let

max
16k6n

n

k(n− k)

∥∥∥∥S(k; θ̂n)− (S(k; θ0)−
k

n
S(n; θ0))

∥∥∥∥2 = oP (1)

for some θ0.

This assumptions allows us to replace the estimator in the statistic by a fixed value θ0

(usually given by the true or best approximating parameter in the given model) in addition

to some centering, which is needed as the estimator θ̂n is the zero of S(n; θ̂n). Typically, this

assumption can be derived using a Taylor-expansion in addition to the
√
n-consistency of θ̂n

for θ0.

A. 2. (i) Let { 1√
n
S(⌊nt⌋; θ0) : 0 6 t 6 1} fulfill a functional central limit theorem towards

a Wiener process {W(t) : 0 6 t 6 1} with regular covariance matrix Σ as limit.

(ii) Let both a forward and backward Hájek-Rényi inequality hold true, i.e. for all 0 6 α < 1

it holds

max
16k6n

1

n1−α kα
∥S(k; θ0)∥2 = OP (1), max

16k6n

1

n1−α (n− k)α
∥S(n; θ0)− S(k; θ0)∥2 = OP (1).

Both assumptions are relatively weak and are fulfilled by a large class of time series.

Hájek-Rényi-type inequalities as above can for example be obtained from moment conditions

(confer Appendix B.1 in Kirch [13]).
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For the Darling-Erdős-type asymptotics we need the following stronger assumption.

A. 3. (i) Let S(k; θ0) fulfill a strong invariance principle, i.e. (possibly after changing

the probability space) there exists a d-dimensional Wiener process W(·) with regular

covariance matrix Σ such that

1√
n
(S(n; θ0)−W(n)) = o((log log n)−1/2) a.s.

(ii) Let {S(n; θ0)− S(k; θ0) : k = n
2
, . . . , n− 1} D

= {S̃(j, θ0) : j = 1, . . . , n/2} such that

1√
n

(
S̃(n; θ0)− W̃(n)

)
= o((log log n)−1/2) a.s.

with {W̃(·)} D
= {W(·)}.

(iii) Let

max
16k6n/ logn

1

k
S(k; θ0)Σ

−1S(k; θ0)

and max
n−n/ logn6k6n

1

n− k
(S(n; θ0)− S(k; θ0))Σ

−1(S(n; θ0)− S(k; θ0))

be asymptotically independent.

Invariance principles as in (i) have been obtained for different kinds of weak dependence

concepts such as mixing to state a classic result (confer Philipps and Stout [18]), where

the rate is typically of polynomial order. Since the definition of mixing is symmetric the

backward invariance principle also follows for such time series. Assumption (iii) is fulfilled

by the definition of mixing but can otherwise be difficult to prove. Similarly, Assumption (ii)

does not necessarily follow by the same methods as (i) (confer e.g. the proof of Theorem 1.3.1

below, where stronger assumptions are needed to get (ii)). Even with the weaker rate o(1)

part (i) implies Assumption A.2 (i) and (ii) for the forward direction (using the Hájek-

Rényi-inequality for independent random variables) while the backward direction follows

from A.3(ii). Assumption (iii) can also be difficult to prove but follows for mixing time

series by definition.

Theorem 1.2.1. We get the following null asymptotics:
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a) Let A.1 and A.2 (i) hold. Assume that the weight function is either a continuous non-

negative and bounded function w : [0, 1] → R+ or for unbounded functions fulfilling (1.2.1)

let additionally A.2 (ii) hold. Then:

(i) max
16k6n

w(k/n)

n
S(k)TΣ−1S(k)

D−→ sup
06t61

w(t)
d∑

j=1

B2
j (t) = D1,

(ii)
∑

16k6n

w(k/n)

n2
S(k)TΣ−1S(k)

D−→
∫ 1

0

w(t)
d∑

j=1

B2
j (t) dt = D2,

where Bj(·), j = 1, . . . , d, are independent Brownian bridges and Σ can be replaced by Σ̂n

if Σ̂n − Σ = oP (1).

b) Under A. 1 and A. 3 it holds

P

(
a(logn) max

16k6n

√
n

k(n− k)
S(k)TΣ−1S(k)− bd(logn) 6 t

)
→ exp(−2e−t),

where a(x) =
√
2 log x, bd(x) = 2 log x+ d

2
log log x− log Γ(d/2) and Γ(·) is the Gamma-

function. Furthermore, Σ can be replaced by an estimator Σ̂n if ∥Σ̂−1/2
n − Σ−1/2∥ =

oP ((log log n)
−1).

The assumption of continuity of the weight function in b) can be relaxed to allow for

a finite number of points of discontinuity, where w is either left or right continuous with

existing limits from the other side.

We will now state some regularity assumptions under the alternative, for which the above

statistics have asymptotic power one. Additionally, we propose a consistent estimator of the

change point in rescaled time.

B. 1. Let supθ∈Θ
∥∥ 1
n
S(⌊nt⌋, θ)− Ft(θ)

∥∥ = oP (1) uniformly in 0 6 t 6 1 for some function

Ft(θ).

This assumption can be obtained under weak moment assumptions from a strong uniform

law of large numbers such as Theorem 6.5 in Ranga Rao [19] if the time series after the change

can be approximated by a stationary and ergodic time series and θ comes from a compact

parameter set.
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B. 2. Let S(n, θ̂n) = 0 and θ1 the unique zero of F1(θ) in the strict sense, i.e. for every

ε > 0 there exists a δ > 0 such that |F1(θ)| > δ whenever ∥θ − θ1∥ > ε.

The first assumption has implicitly already been contained in A.1 for the centering to

make sense. It is fulfilled if the score function used in the change point procedure is the

same (or a linear combination) of the one used to estimate the unknown parameters. The

second assumption guarantees that this estimator converges to θ1 under alternatives. The

strict uniqueness condition given there is automatically fulfilled if F1 is continuous in θ and

Θ is compact.

Proposition 1.2.1. Under Assumptions B.1 and B.2 it holds θ̂n
P−→ θ1.

For the main theorem, we can allow the score function to be different from the one used

in the estimation of θ̂n, a typical example is a projection into a lower dimensional space such

as only the first component of the vector (see Theorem 1.4.2 b) for an example). Assumption

B.2 will then typically not be fulfilled as θ1 can no longer be the unique zero. However, to

get the main theorem it can be replaced by:

B. 3. θ̂n
P−→ θ1.

B. 4. The change point is of the form: k0 = ⌊λn⌋, 0 < λ < 1.

Assumption B.4 is standard in change point analysis but can be weakened for Part a) of

Theorem 1.2.2 below.

B. 5. (i) Fλ(θ)Σ
−1Fλ(θ) > c > 0 in an environment of θ1.

(ii) lim infn→∞ Fλ(θ)Σ̂
−1
n Fλ(θ) > c > 0 in an environment of θ1.

(iii) Σ̂n → ΣA with Fλ(θ)Σ
−1
A Fλ(θ) > c > 0 in an environment of θ1.

This assumption is crucial in understanding which alternatives we can detect. Typically, in

the correctly specified model before and after the change and if the same score vector is used

for the change point test as for the parameter estimation, (i) will always be fulfilled. However,

if only part of the score vector is used as e.g. in Theorem 1.4.2 b) below, then this condition
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describes which alternatives are still detectable. Typically, the power to detect those will be

larger than for the full test at the cost of not having power for different alternatives at all.

Part (ii) and (iii) allow to use estimators of Σ that do not converge or converge to a different

limit matrix ΣA under alternatives than under the null hypothesis. If this limit matrix ΣA is

positive definite, then this is no additional restriction on which alternatives can be detected.

Obviously (iii) implies (ii). The following additional assumption is also often fulfilled and

yields the additional assertions in b) and c) below.

B. 6. Ft(·) is continuous in θ1 and Ft(θ1) = Fλ(θ1)g(t) with

g(t) =


1
λ
t, t 6 λ,

1
1−λ

(1− t), t > λ.

From these assumptions we now derive the following general theorem:

Theorem 1.2.2. Under alternatives we get the following assertions:

a) If Assumptions B.1, B.3, B.4 and B.5(i) hold, then the Darling-Erdős- and max-type

statistics for continuous weight functions fulfilling w(λ) > 0 have asymptotic power one,

i.e. for all x ∈ R it holds

(i) P

(
max
16k6n

w(k/n)

n
S(k)TΣ−1S(k) > x

)
→ 1,

(ii) P

(
a(log n) max

16k6n

√
S(k)TΣ−1S(k)− bd(log n) > x

)
→ 1.

If B.5(i) is replaced by B.5(ii), then the assertion remains true if Σ is replaced by Σ̂n.

b) If additionally B.5 holds, then the max-type statistics as well as sum-type statistics for a

continuous weight function w(·) ̸= 0 fulfilling (1.2.1) have power one, i.e. it holds for all

x ∈ R

P

 ∑
16k6n

w(k/n)

n2
S(k)TΣ−1S(k) > x

→ 1.

If B.5(i) is replaced by B.5(ii), then the assertion remains true if Σ is replaced by Σ̂n.

c) Let λ̂n = argmaxS(k)TΣ−1S(k)
n

be an estimator for the change point in rescaled time λ. Under
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Assumptions B.1, B.3, B.4 and B.5(i) it is consistent, i.e.

λ̂n − λ = oP (1).

If B.5(i) is replaced by B.5(iii), then the assertion remains true if Σ is replaced by Σ̂n.

The continuity assumption on the weight function can also be relaxed in this situation.

While these test statistics were designed for the situation, where at most one change is

expected, they usually also have power against multiple changes. This fact is the underlying

principle of binary segmentation procedures (first proposed by Vostrikova [22]), which work

as follows: The data set is tested using an at most one change test as above. If that test is

significant, the data set is split at the estimated change point and the procedure repeated

on both data segments until not significant anymore.

The optimal rate of convergence in b) is usually given by λ̂n − λ = OP (1/n) but requires

a much more involved proof (confer Csörgő and Horváth [2], Theorem 2.8.1, for a proof in

a mean change model).

1.3 Detection of changes in binary models

Binary time series are important in applications, where one is observing whether a certain

event has or has not occurred within a given time frame. Wilks and Wilby [26] for example

observe, whether it has been raining on a specific day, Kauppi and Saikkonen [12] and

Startz [21] observe whether or not a recession has occurred in a given month. A common

binary time series model is given by

Yt | Yt−1, Yt−2, . . . , Zt−1, Zt−2, . . . ∼ Bern(πt(β)), with g(πt(β)) = βTZt−1,

for a regressor Zt−1 = (Zt−1, . . . , Zt−p)
T , which can be purely exogenous, purely autoregres-

sive or a mixture of both. Typically, the canonical link function g(x) = log (x/(1− x)) is
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used and statistical inference is based on the partial likelihood

L(β) =
n∏

t=1

πt(β)
yt(1− πt(β))

1−yt ,

with corresponding score-vector

Sn(β) =
n∑

t=1

Zt−1(Yt − πt(β)) (1.3.1)

for the canonical link function above.

Theorem 1.3.1. For the partial score vector Sk(β) and the corresponding maximum likeli-

hood estimator β̂n we get the following assertions under the null hypothesis:

a) Let the covariate process {Zt} be strictly stationary and ergodic with existing fourth mo-

ments. Then, under the null hypothesis, A.1 and A.3 (i) are fulfilled.

b) If additionally (Yt, Zt−1, . . . , Zt−p)
T is mixing with exponential rate, then A.3 (ii) and (iii)

are also fulfilled.

Remark 1.3.1. For Zt−1 = (Yt−1, . . . , Yt−p)
T , Yt is the standard binary autoregressive model

(BAR(p)), for which the assumptions of Theorem 1.3.1, b) are fulfilled, see, e.g. Wang

and Li [23]. However, considering some regularity assumptions on the exogenous process,

one can prove that (Yt, . . . , Yt−p+1, Zt, . . . , Zt−q) is a Feller chain, for which Theorem 1 of

Feigin and Tweedie [4] can be applied to derive its geometric ergodic property (see Kirch and

Tadjuidje Kamgaing [14] for details on this issue) implying that it is mixing with exponential

rate.

From Theorem 1.3.1 and Theorem 1.2.1 we immediately get the null asymptotics for the

corresponding change point statistics based on the full score vector Sk(β̂n) as well as on

linear combinations of the score vector such as using the first component, i.e. based on

S̃k(β̂n) with

S̃k(β) =
k∑

j=1

(Yt − πt(β)), (1.3.2)
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where in both cases β̂n is the zero of (1.3.1). The first approach for w ≡ 1 has been proposed

by Fokianos et al. [7], the second one with a somewhat different standardization in a purely

autoregressive setup has been considered by Hudeková [11]. Hudeková’s statistic is the score

statistic based on the partial likelihood and the restricted alternative of a change only in the

intercept.

BAR-Alternative: Let the following assumptions hold:

H1(i) The change point is of the form k0 = ⌊λn⌋, 0 < λ < 1.

H1(ii) The binary time series {Yt} as well as the covariate process {Zt} before the change

fulfill the assumptions of Theorem 1.3.1 (a).

H1(iii) The time series after the change as well as the covariate process after the change can

be written as Yt = Ỹt + R1(t) respectively Zt = Z̃t + R2(t), t > ⌊nλ⌋, where {Ỹt} is

bounded, stationary and ergodic and {Z̃t} is square-integrable as well as stationary

and ergodic with remainder terms fulfilling

1

n

n∑
j=⌊λn⌋+1

R2
1(t) = oP (1),

1

n

n∑
j=⌊λn⌋+1

∥R2(t)∥2 = oP (1).

H1(iv) λEZ0(Y1 − π1(β)) + (1 − λ)EZ̃n−1(Ỹn − π̃1(β)) has a unique zero β1 ∈ Θ and Θ is

compact and convex with β̂n ∈ Θ.

The formulation of the alternative allows for rather general alternatives including situations

where starting values from before the change are used resulting in a non-stationary time

series after the change. Neither Hudeková [11] nor Fokianos et al. [7] have derived the

behavior of their statistics under alternatives.

Theorem 1.3.2. Let H1(i)- H1(iv) hold.

(a) For S(k,β) = Sk(β) as in (1.3.1) B.1 and B.2 are fulfilled, which implies B.3. If

k0 = ⌊λn⌋, then B.6 is fulfilled with Fλ(β) = λEZ0(Y1 − π1(β)).

(b) For S(k,β) = S̃(k) as in (1.3.2) and if k0 = ⌊λn⌋, then B.6 is fulfilled with Fλ(β) =

λE(Y1 − π1(β)).
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B.5 is fulfilled for the full score statistic from Theorem 1.3.2,(a), if the time series before

and after the change are correctly specified by nary time series models with different pa-

rameters. Otherwise, restrictions apply. Together with Theorem 1.2.2 this implies that the

corresponding change point statistics have power one and the point where the maximum is

obtained is a consistent estimator for the change point in rescaled time.

1.4 Detection of changes in Poisson autoregressive models

Another popular model for time series of counts is given by the Poisson autoregression, where

we observe Y1−p, . . . , Yn with

Yt | Yt−1, Yt−2, . . . , Yt−p ∼ Pois(λt), λt = fγ(Yt−1, . . . , Yt−p). (1.4.1)

If fγ(x) is Lipschitz-continuous in x for all γ ∈ Θ with Lipschitz constant strictly smaller

than 1, then there exists a stationary ergodic solution of the (1.4.1) which is β-mixing with

exponential rate (confer Neumann [17]). For a given parametric model fθ this allows to

consider score-type change point statistics based on likelihood equations using the tools

of Section 1.2. The mixing condition in connection to some moment conditions typically

allow to derive A. 3 while a Taylor-expansion in connection with
√
n-consistency of the

corresponding maximum likelihood estimator as e.g. derived by Doukhan and Kegne [3],

Theorem 3.2, gives A. 1 under some additional moment conditions. However, in this paper,

we will concentrate on change point statistics based on least-squares scores generalizing

results of Franke et al. [9]. To this end, consider the least-squares estimator θ̂n defined (in

the score version) by Sn(γ̂n) = 0, where

Sn(γ) =
n∑

t=1

∇fγ((Yt−1, . . . , Yt−p))(Yt − fγ(Yt−1, . . . , Yt−p)), (1.4.2)
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where ∇ denotes the gradient with respect to γ. Under the additional assumption fγ(x) =

γ1 + fγ2,...,γd(x) this implies in particular that

n∑
t=1

(Yt − fγ̂n(Yt−1, . . . , Yt−p)) = 0.

Assumptions under H0:

H0(i) Yt is stationary and mixing with exponential rate such that E supγ∈Θ f 2
γ (Yt) < ∞.

H0(ii) fγ(x) = γ1 + fγ2,...,γd(x) is twice continuously differentiable with respect to γ for all

x ∈ Np
0 and

E sup
γ∈Θ

∥∇fγ(Yt)∇T fγ(Yt)∥ < ∞, E
(
Yt sup

γ∈Θ
∥∇2fγ(Yt−1)∥

)
< ∞.

H0(iii) e(γ) = E(Yt − fγ(Yt−1))
2 has a unique minimizer γ0 in the interior of some compact

set Θ such that the Hessian of e(γ0) is positive definite.

As already mentioned (i) is fulfilled for a large class of Poisson autoregressive processes under

mild conditions. Assumption (ii) does not need to be fulfilled for the true regression function

of {Yt} (in fact Yt does not even need to be a Poisson autoregressive time series) but only

for the function used in the statistical procedure. Assumption (iii) is fulfilled for the true

value if {Yt} is a Poisson autoregressive time series with regression function fγ.

Theorem 1.4.1. Let under the null hypothesis H0(i) - (iii).

a) If E∥∇fγ0(Yp, . . . , Y1)∥ν < ∞ for some ν > 2, then S(k, γ) =
∑k

j=1(Yt−fγ̂n(Yt−1, . . . , Yt−p))

fulfills A.1 and A.3 with Σ = (σ2) the long-run variance of Yt − fγ0((Yt−1, . . . , Yt−p)).

b) If fγ(x) = γ1+(γ2, . . . , γd)
Tx and E|Y0|ν < ∞ for some ν > 4, then S(k, γ) =

∑k
j=1Yt−1(Yt−

γ̂T
nYt−1), where Yt−1 = (Yt−1, . . . , Yt−p)

T fulfills A.1 and A.3, where Σ is the long-run co-

variance matrix of {Yt−1(Yt − γT
0 Yt−1)}.

Together with Theorem 1.2.1 this implies the null asymptotics for a large class of change

point statistics.
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Assumptions under H1:

H1(i) The change point is of the form k0 = ⌊λn⌋, 0 < λ < 1.

H1(ii) For all γ ∈ Θ, Θ is compact and convex, and fγ(x) is uniformly Lipschitz in x with

Lipschitz constant Lγ < 1.

H1(iii) The time series before the change is stationary and ergodic such that

E supγ∈Θ ∥Yt−j∇fγ(Yt−1, . . . , Yt−p)∥ < ∞, j = 0, . . . , p.

H1(iv) The time series after the change fulfills Yt = Ỹt + R1(t), t > ⌊λn⌋, where {Ỹt}
is stationary and ergodic such that E supγ∈Θ ∥Ỹt−j∇fγ(Ỹt−1, . . . , Ỹt−p)∥ < ∞, j =

0, . . . , p with the remainder term fulfilling

1

n

n∑
j=⌊λn⌋+1

R2
1(t) = oP (1).

H1(v) λE∇fγ((Y0, . . . , Y1−p))(Y1 − fγ((Y0, . . . , Y1−p))) + (1 − λ)E∇fγ(Ỹ0, . . . , Ỹ1−p)(Ỹ1 −
fγ(Ỹ0, . . . , Ỹ1−p)) has a unique zero γ1 ∈ Θ in the strict sense of B.2.

This formulation allows for certain deviations from stationarity of the time series after the

change which can e.g. be caused by starting values from the stationary distribution before

the change.

The following theorem extends results of Franke et al. [9].

Theorem 1.4.2. Let assumptions H1(i) – H1(iv) be fulfilled.

a) For S(k, γ) = Sk(γ) as in (1.4.2) B.1 and B.2 are fulfilled.

b) For S(k, γ) =
∑k

j=1(Yt−fγ(Yt−1, . . . , Yt−p)) and if k0 = ⌊λn⌋, B.6 is fulfilled with Fλ(t) =

E(Y1 − γT
1 Y0)..

c) For S(k, γ) = Sk(γ) as in(1.4.2) with fγ(x) = γTx and if k0 = ⌊λn⌋, then B.6 is fulfilled

with Fλ(t) = EY0(Y1 − γT
1 Y0).
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B.5 is always fulfilled for the full score statistic if the time series before and after the change

are correctly specified by the given Poisson autoregressive model. Otherwise restrictions

apply.

Doukhan and Kengne [3] propose to use several Wald type statistics based on maximum

likelihood estimators in Poisson autoregressive models. While their statistics are also de-

signed for the at most one change situation, they explicitly prove consistency under the

multiple change point alternative.

1.5 Simulation and data analysis

In the previous sections we have derived the asymptotic limit distribution for various statis-

tics as well as shown that the corresponding tests have asymptotic power one under relatively

general conditions. In particular, we have proven the validity of these conditions for two im-

portant classes of integer valued time series: Binary autoregressive as well as Poisson counts.

In this section we give a short simulation study in addition to some data analysis to illustrate

the small sample properties of these tests complementing simulations of Hudeková [11] and

Fokianos et al. [7].

1.5.1 Binary autoregressive time series

In this section we consider a first order binary autoregressive time series (BAR(1)) as defined

in Section 1.3 with Zt−1 = (1, Yt−1). We consider the statistic

Tn = max
16k6n

1

n
Sk(β))

T Σ̂
−1
Sk(β),

where Σ̂ =
1

n

n∑
j=1

Zt−1ZT
t−1πt(β̂0)(1− πt(β̂0))

and Sk(β) is as in (1.3.1). Since Σ̂ consistently estimates Σ = E(Zt−1ZT
t−1πt(β0)(1−πt(β0))

T

under the null hypothesis, by Theorem 1.3.1 as well as Theorem 1.2.1 the asymptotic null
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Figure 1.1: Sample paths for the BAR(1)-model, β1 = (2,−2), k0 = 250, n = 500.

distribution of this statistic is given by

sup
06t61

(B2
1(t) +B2

2(t)) (1.5.1)

for two independent Brownian bridges {B1(·)} and {B2(·)} with a simulated 95% quantile

of 2.53. Table 1.1 reports the empirical size and power (based on 10 000 repetitions) for

various alternatives, where a change always occurred at n/2. Figure 1.5.1 shows one sample

path for the null hypothesis and each of the alternatives considered there. The size is always

conservative and gets closer to the nominal level with increasing sample size as predicted by

the asymptotic results. Similarly, the power is quite good, further increasing with increasing

sample size, where as always some alternatives are easier detected than others.

Table 1.1: Empirical size and power of binary autoregressive model with β1 = (2,−2)
(parameter before the change)

H0 H1 : β2 = (1,−2) H1 : β2 = (1,−1) H1 : β2 = (2,−1)

n 200 500 1000 200 500 1000 200 500 1000 200 500 1000

0.032 0.040 0.044 0.650 0.985 1.00 0.176 0.520 0.871 0.573 0.961 0.999

Data analysis: US recession data

We now apply the above test statistic to the quarterly recession data (confer Figure 1.2)

from the USA for the period 1855–20121. The data is 1 if there has been a recession in at

least one month in the quarter and 0 otherwise. The data have been previously analyzed

1This data set can be downloaded from the National Bureau of Economic Research at http://research.stlouisfed.org/

fred2/series/USREC.
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by different authors in particular it has recently been analyzed in a change point context by

Hudeková [11].

1860 1880 1900 1920 1940 1960 1980 2000

0

1

Figure 1.2: Quarterly US Recession data (1855–2012)

We find a change in the first quarter of 1933, which corresponds to the end of the great

depression that started in 1929 in the US and lead to a huge unemployment rate in 1932.

If we split the time series at that point and repeat the change point procedure, no further

significant result can be obtained. This is consistent with the findings in Hudeková [11], who

applied a different statistic based on a binary autoregressive time series of order 3.

1.5.2 Poisson autoregressive models

In this section we consider a Poisson autoregressive model as in (1.4.1) with λt = γ1+γ2Yt−1.

For this model, we use the following test statistic based on least-squares scores

Tn = max
16k6n

1

n
Sk(γ)

T Σ̂
−1
Sk(γ),

where Sk(γ) =
k∑

t=1

Yt−1(Yt − λt), Yt−1 = (1, Yt−1)
T

and Σ̂
−1

is the empirical covariance matrix of {Yt−1(Yt − λt)}. By Theorem 1.4.1 b) and 1.2.1

this statistic has the same null asymptotics as in (1.5.1). Table 1.2 reports the empirical

size and power (based on 10 000 repetitions) for various alternatives, where a change always

occurred at n/2. Figure 1.5.2 shows one corresponding sample path for each scenario. The

size is always conservative and gets closer to the nominal level with increasing sample size

as predicted by the asymptotic results. Similarly, the power is quite good, further increasing
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Figure 1.3: Sample paths for the Poisson autoregressive model, γ1 = (1, 0.75), k0 = 100,
n = 200.

with increasing sample size, where as always some alternatives are easier detected than

others. Some first simulations suggest that using the statistic associated with the maximum-

likelihood-scores can further increase the power. While a detailed theoretic analysis can in

principle be done based on the results in Section 1.2, it is beyond the scope of this work.

Table 1.2: Empirical size and power of Poisson autoregressive model with γ1 = (1, 0.75)
(parameter before the change)

H0 H1 : γ2 = (2, 0.75) H1 : γ2 = (2, 0.5) H1 : γ2 = (1, 0.5)

n 200 500 1000 200 500 1000 200 500 1000 200 500 1000

0.028 0.0361 0.036 0.531 0.967 0.999 0.252 0.683 0.968 0.271 0.895 0.999

Data analysis: Number of transactions per minute for Ericsson B stock

In this section we use the above methods to analyze the data set that consists of the number

of transactions per minute for the stock Ericsson B during July 3rd 2002. The data set

consists of 460 observations instead of the 480 for the eight hours of transactions because the

first five minutes and last 15 minutes of transactions are not taken into account. Fokianos

et al. [8] have analyzed the transactions count from the same stock on a different day with

a focus on forecasting the number of transactions. The data and estimated change points

(using a binary segmentation procedure as described below Theorem 1.2.2) are illustrated in

Figure 1.4.

In fact, the empirical autocorrelation function of the complete time series in Figure 1.5

decreases very slowly, which can either be taken as evidence of long-range dependence or the

presence of change points. Figure 1.6 shows the empirical autocorrelation function of the
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data in each segment supporting the conjecture that change points rather than long range

dependence cause the slow decrease of the empirical autocorrelation function of the full data

set.
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Figure 1.4: Transactions per minute for
the stock Ericsson B on July 3rd, 2002,
where the red vertical lines are the esti-
mated change points
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Figure 1.5: Sample autocorrelation function
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Figure 1.6: The empirical autocorrelation of the segmented data, taking into account the
estimated change points.

1.6 Appendix: Proofs

Proof of Theorem 1.2.1. By Assumption A.1 we can replace S(k) in all three statistics by

S(k; θ0) without changing the asymptotic distribution, where – for the statistics in a) – one

needs to note that by (1.2.1)

sup
16k6n

w

(
k

n

)
k

n

n− k

n
= O(1).

For a bounded and continuous weight function, the assertion then immediately follows by

the functional central limit theorem. For an unbounded weight function, note that for any
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0 < τ < 1/2 it follows from the Hájek-Rényi-inequality and (1.2.1) that

max
16k6τn

w(k/n)

n
(S(k; θ0)−

k

n
S(n; θ0))Σ

−1(S(k; θ0)−
k

n
S(n; θ0))

6 sup
1−τ6t<1

w(t)tα∥Σ−1/2∥ max
16k6n

1

n1−α kα
∥S(k; θ0)∥2

P
to0

as τ → 0 uniformly in n. By the backward inequality and the fact that S(k; θ0)− k
n
S(n; θ0) =

−((S(n)−S(k))− n−k
n
S(n)) an analogous assertion holds for max(1−τ)n6k6n as well as for the

corresponding maxima over the limit Brownian bridges. Since the functional central limit

theorem implies the claimed distributional convergence for maxτn6k6(1−τ)n, careful arguments

yield the assertion. The result for estimated Σ is immediate.

To prove b), first note that by the invariance principle in A.2 as well as the law of iterated

logarithm we get

max
16k6logn

n

k(n− k)

(
S(k; θ0)−

k

n
S(n; θ0)

)T

Σ−1

(
S(k; θ0)−

k

n
S(n; θ0)

)
= oP

((
bd(log n)

a(logn)

)2
)
.

By the invariance principle in addition to Theorem 2.1.4 in Schmitz [20] (the theorem there

is for the univariate case but the rates immediately carry over to the multivariate situation

here) we also get

max
n/ logn6k6n/2

n

k(n− k)

(
S(k; θ0)−

k

n
S(n; θ0)

)T

Σ−1

(
S(k; θ0)−

k

n
S(n; θ0)

)
= oP

((
bd(logn)

a(logn)

)2
)
.

The invariance principle in combination with Horvath [10], Lemma 2.2 (in addition to

analogous arguments as above), imply that

P

(
a(logn) max

logn6k6n/ logn

√
n

k(n− k)
S(k)TΣ−1S(k)− bd(logn) 6 t

)
→ exp(−e−t).

By Assumption A.2 the exact same arguments lead to analogous assertions for k > n/2,

which imply the assertion by the asymptotic independence guaranteed by Assumption A.3.
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From this, we also get that

∥∥∥∥√ n
k(n−k)

(S(k; θ0)− k
n
S(n; θ0))

∥∥∥∥ = OP (
√
log log n), which implies

√
log log n

√
n

k(n− k)

(
S(k; θ0)−

k

n
S(n; θ0)

)T

Σ−1

(
S(k; θ0)−

k

n
S(n; θ0)

)

−
√

log log n

√
n

k(n− k)

(
S(k; θ0)−

k

n
S(n; θ0)

)T

Σ̂−1

(
S(k; θ0)−

k

n
S(n; θ0)

)
6
√

log log n

∥∥∥∥(Σ−1/2 − Σ̂−1/2)

√
n

k(n− k)

(
S(k; θ0)−

k

n
S(n; θ0)

)∥∥∥∥
= OP (log logn)

∥∥∥Σ−1/2 − Σ̂−1/2
∥∥∥ = oP (1),

showing that the statistic with estimated covariance matrix yields the same asymptotics.

Proof of Proposition 1.2.1. Using the subsequence principle it suffices to prove the following

deterministic result: Let supx ∥Gn(x)−G(x)∥ → 0 (as n → ∞), then it holds for Gn(xn) = 0

and x1 the unique zero of G(x) in the strict sense of B.2 that xn → x1. To this end,

assume that this is not the case, then there exists ε > 0 and a subsequence α(n) such that

|xα(n)−x1| > ε. But then since x1 is a unique zero in the strict sense it holds ∥G(xα(n))∥ > δ

for some δ > 0. However, this is a contradiction as

∥G(xα(n))∥ = ∥G(xα(n))−Gα(n)(xα(n))∥ 6 sup
x

∥Gα(n)(x)−G(x)∥ → 0.

Proof of Theorem 1.2.2. B.1, B.3, B.4 and B.5 (i) imply

1

n2
S(k0)Σ

−1S(k0) > c+ oP (1),

hence

max
16k6n

w(k/n)

n
S(k)TΣ−1S(k) > nw(λ)(c+ oP (1)) → ∞,

a(logn)

bd(logn)
max
16k6n

n

k(n− k)
S(k)TΣ−1S(k) > a(logn)

bd(logn)
n

1

λ(1− λ)
(c+ oP (1)) → ∞,

which implies assertion a). If additionally, B.6 holds, we get the assertion for the maximum-

type statistic analogously if we replace k0 above by ⌊ϑn⌋ with w(ϑ) > 0. For the sum-type
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statistics we get similarly

1

n

n∑
j=1

w(k/n)
1

n
S(k)TΣ−1S(k) = nc

(∫ 1

0

w(t)g2(t) dt+ oP (1)

)
→ ∞,

since the assumptions on w(·) guarantee the existence of
∫ 1

0
w(t)g2(t) dt and it holds∫ 1

0
w(t)g2(t) dt ̸= 0. The second assertion follows by standard arguments since λ is the

unique maximizer of the continuous function g and by Assumptions B.1 and B.6 it holds

sup
06t61

∣∣∣∣ 1n2
S(⌊nt⌋)TΣ−1S(⌊nt⌋)− Fλ(θ1)Σ

−1Fλ(θ1) g
2(t)

∣∣∣∣→ 0,

where B.5 guarantees that the limit is not zero. The proofs show that the assertions remain

true if Σ is replaced by Σ̂n under the stated assumptions.

Proof of Theorem 1.3.1. Assumption A.1 can be obtained by a Taylor expansion, the ergodic

theorem in addition to the
√
n-consistency of the estimator β̂n. The arguments are given

in detail in Fokianos et al. [7] (Proof of Proposition 3), where by the stationarity of {Zt}
their arguments go through in our slightly more general situation for k 6 n/2, for k > n/2

analogous arguments give the assertion on noting that (with the notation of Fokianos et al.

[7])

k∑
t=1

Z
(i)
t−iZ

(j)
t−1πt(β)(1− πt(β))−

k

n

n∑
t=1

Z
(i)
t−iZ

(j)
t−1πt(β)(1− πt(β))

= −
n∑

t=k+1

Z
(i)
t−iZ

(j)
t−1πt(β)(1− πt(β)) +

n− k

n

n∑
t=1

Z
(i)
t−iZ

(j)
t−1πt(β)(1− πt(β)).

Assumption A.3 (i) follows from the strong invariance principle in Proposition 2 of Fokianos

et al. [7]. Assumption A. 3 (ii) does not follow by the same proof technics as an autoregres-

sive process in reverse order has different distributional properties than an autoregressive

process. However, if the covariate (Yt, Zt−1, . . . , Zt−p)
T is mixing, the same holds true for the

summands of the score process (with the same rate). Since the mixing property also trans-

fers to the time-inverse process, the strong invariance principle follows from the invariance

principle for mixing processes given by Kuelbs and Philipp [16], Theorem 4. The mixing

assumption then also implies A.3 (iii).
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Proof of Theorem 1.3.2. First note that

sup
θ∈Θ

∥Sk(β)− ESk(β)∥ = op(n) (1.6.1)

uniformly in k 6 k0 = ⌊nλ⌋ by the uniform ergodic theorem of Ranga Rao [19], Theorem

6.5. For k > k0 it holds

ZkYk = Z̃kỸk + Z̃kR1(t) + ỸkR2(t) +R1(t)R2(t),

Zkπk(β) = Z̃kπk(β) + R1(k)πk(β) = Z̃kπ̃k(β) +O(Z̃kβ
TR1(k)) +O(R1(k)),

where g(π̃k(β)) = βT Z̃t−1 and the last line follows from the mean value theorem. An

application of the Cauchy-Schwarz inequality together with (iii) and the compactness of Θ

shows that the remainder terms are asymptotically negligible, implying

sup
β

∥Sk(β)− Sk0(β)− ES̃k(β)− ESk0(β)∥ = op(n)

uniformly in k > k0, where

S̃k(β) =

min(k0,k)∑
t=1

Zt−1(Yt − πt(β)) +
k∑

t=k0+1

Z̃t−1(Ỹt − π̃t(β))

Together with (1.6.1) this implies B.1 with

Ft(λ) = min(t, λ)EZ0(Y1 − π1(β)) + (t− λ)+ EZ̃n−1(Ỹn − π̃n(β)).

Since Ft(β) is continuous in β, B.2 follows from (iv). B.6 follows since by definition of β1

it holds EZ̃n−1(Ỹn − π̃n(β1)) = −λ/(1− λ)EZ0(Y1 − π1(β1)).

Proof of Theorem 1.4.1. It suffices to show that the assumptions of Theorem 1.2.1 are ful-

filled. Assumption A.1 follows for a) as well as b) analogously to the proof of Lemma 1

in Franke et al. [9]. The invariance principles in A.2 and A.3 then follow from the strong

mixing assumption and the invariance principle of Kuelbs and Philipp [16]. The asymptotic

independence of A.3 also follows from the mixing condition.
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Proof of Theorem 1.4.2. This is analogous to the proof of Theorem 1.3.2 where the mean

value theorem is replaced by the Lipschitz assumption, which also implies |fγ(x)| 6 |fγ(0)+
x|.
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