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Abstract

In this paper, we discuss the problem of testing for a changepoint in the struc-
ture of an integer-valued time series. In particular, we consider a test statistic
of cumulative sum (CUSUM) type for general Poisson autoregressions of order
1. We investigate the asymptotic behaviour of conditional least-squares esti-
mates of the parameters in the presence of a changepoint. Then, we derive the
asymptotic distribution of the test statistic under the hypothesis of no change,
allowing for the calculation of critical values. We prove consistency of the test,
i.e. asymptotic power 1, and consistency of the corresponding changepoint es-
timate. As an application, we have a look at changepoint detection in daily
epileptic seizure counts from a clinical study.
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1 Introduction

Time series of counts assume values in N0, the natural numbers including 0. They
have a wide range of applications, e.g. in life sciences where they show up as counts
of events, e.g. epileptic seizures (compare [1], [13]), in consecutive time intervals or
as counts of individuals or objects over time, e.g. of animals in a given habitat (com-
pare [15]) or of infections during an epidemic [8]. Sequences of counts which exhibit
temporal dependence appear also in many other fields of applications like statistical
quality control [30] or finance [27], [9], [19] and insurance [34]. For a review of the
field we refer to the recent survey by Fokianos [12].

As in standard time series analysis, deviations from stationarity, in particular sudden
changes in the data-generating mechanism, are of interest. There is some demand for
tests which allow for deciding if the structure of the data is homogeneous in time,
and, if this is not the case, to estimate the changepoint in time. For linear autore-
gressive processes with a continuous range several authors have derived related tests.
Kulperger [24] as well as Horváth [16] use test statistics based on partial sums of
residuals. Similary, Bai [2] makes use of partial sums of residuals for the change
analysis in ARMA-models. Davis et al. [4] obtain a Gaussian-type likelihood ratio
statistic which is related to the approach using weighted sums of residuals by Hušková
, Prášková and Steinebach [18], both of which have power against a larger class of
residuals than statistics based on partial sums of residuals.

Recently, Kirch and Tadjuidje-Kamgaing [23] have developped various CUSUM-type
tests for changepoints in nonlinear, possibly misspecified autoregressions correspond-
ing to neural network based autoregressive functions. For integer-valued time series,
Weiß and Testik [31] have investigated CUSUM charts for detecting changes in integer-
valued autoregressions (INAR) from a practical point of view. We consider another
class of integer-valued time series, the Poisson autoregressions or INARCH-processes,
for which Fokianos and Fried [10] have already discussed some kind of changepoint
problems. Their approach, however, is targeted at another type of changes in the
structure of the time series (compare the discussion preceding subsection 2.1).

Time series of counts have many features in common with time series with a con-
tinuous range, but in some regards, they show a different behaviour from a technical
point of view due to the countability of the possible values. In contrast to prelimi-
nary expectations, the discreteness of the range makes it more difficult to prove some
properties like, e.g., mixing, which are basic for dealing with the asymptotics of esti-
mates and tests. Recently, there has been a breakthrough in that respect. Fokianos
et al [9], Neumann [22] and Franke [14] showed various kinds of weak dependence
properties for Poisson autoregressions. Similar results have been derived by Fokianos
and Tjostheim [11] for log-linear Poisson autoregressions resp. by Triebsch [29] for
integer-valued autoregressions.

In this paper, we use that theoretical basis to develop a CUSUM-type test for a
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changepoint and an estimate of the changepoint as well as the corresponding asymp-
totic theory. As a paradigm we consider a popular specific model for time series of
counts, the Poisson autoregression. In the simplest case of order 1, it has the form

L{Xt|Ft−1} = Poisson(λt), λt = ω + αXt−1, (1.1)

i.e. the conditional distribution of the observation at time t given the past data is
simply Poisson with a random parameter depending on the previous observation only.
This process is also known in the literature as integer-valued ARCH process of order
1 or INARCH(1), as the conditional variance

var{Xt|Ft−1} = λt = ω + αXt−1

shares a similar dependence on the past with the classical ARCH(1) process of Engle
[7]. The INARCH(1) model is a special case of the integer-valued GARCH or IN-
GARCH process studied by Ferland et al. [8].

For a review of the properties of the Poisson autoregression model and related ones,
we refer to Chapter 3 of Fokianos [12]. Here, we need that a choice of parameters
satisfying ω > 0, 0 ≤ α < 1 guarantees the existence of a stationary solution of
(1.1). In that case, the time series of counts has the same autocorrelation structure
as a linear Gaussian autoregression of order 1 with autoregressive parameter α, i.e.
corr(Xs, Xt+s) = αt, t ≥ 0. The process may be written in the form

Xt = ω + αXt−1 + εt, with εt = Xt − λt,

where the residuals εt are zero-mean white noise, i.e. a sequence of pairwise uncorre-
lated random variables, with var εt = EXt. For α > 0, the process in its stationary
state exhibits overdispersion (compare Weiß [33]), i.e.

EXt =
ω

1 − α
<

ω

(1 − α)(1 − α2)
= varXt. (1.2)

This is a desirable feature as many time series of counts in practice show an overdis-
persion effect empirically.

In the following, we consider the more general class of nonlinear parametric Pois-
son autoregressions of order 1

L{Xt|Ft−1} = Poisson(λt), λt = gθ(Xt−1) (1.3)

where gθ is some known positive function on N0 depending on the parameter θ ∈
Θ ⊂ R

d. Similarly, higher-order autoregressions could be dealt with, but we restrict
our considerations to order 1 to keep the notation as simple as possible. As for the
INARCH(1)-model one may write this process in the form Xt = gθ(Xt−1) + εt, where
the residuals

εt = Xt − gθ(Xt−1) (1.4)
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are a zero-mean white-noise process. This is an important observation since the
changepoint tests developed in this paper are based on estimated residuals.

To avoid a distinction of cases, we always assume that the autoregressive function
gθ involves a constant term as the first parameter, i.e.

gθ(x) = θ1 + gθ2,...,θd
(x). (1.5)

This is a question of parametrization and does not restrict the scope of the model.
Later on, we consider conditional least-squares (CLS) estimates for the model pa-
rameter. There, we need the following technical condition, which is typical for the
asymptotics of M-estimates:

(A1) The parameter set Θ is compact.

In case of model (1.1), we just have to constrain the two parameters by assuming
δ ≤ ω ≤ Δ, 0 ≤ α ≤ 1 − δ for some arbitrary small δ > 0 and some arbitrary large
Δ < ∞.

In the next chapter, we formally introduce the changepoint problem. As a first step
towards a corresponding test, we derive the asymptotics, i.e. consistency and asymp-
totic normality, for the CLS estimate of the model parameter θ. Then, we derive the
asymptotic distribution of the changepoint test statistic under the hypothesis, which
allows to construct the test, followed by some asymptotics under the alternative which
shows that the test is consistent in the sense that its asymptotic power is 1. As a
by-product, we get consistency of an estimate of the changepoint.

In chapter 3, we apply the changepoint procedure to some artificially generated data
as well as to a real data example from pharmaceutical research where the observations
are daily epileptical seizure counts. All the proofs are postponed to the appendix.

2 Testing for a changepoint

We are interested in a change of the model parameters during the period where data
are collected, and we consider the following formulation of this changepoint detection
problem: Given two independent stationary time series {Yt}, {Y ∗

t } both following
model (1.3), but with different parameters θ = θ0 and θ = θ∗0 resp. We observe
X0, . . . , XN , where

Xt =

{
Yt t ≤ k∗

Y ∗
t t > k∗ (2.1)

for some 1 ≤ k∗ ≤ N . If k∗ = N , we have Xt = Yt, t = 0, . . . , N, and there is no
change in the observed time series of counts Xt. For k∗ < N , we have a change of
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parameters at time k∗. We look for a test solving the following decision problem:

H0 : k∗ = N against H1 : k∗ < N (2.2)

For asymptotic considerations, we need a growing number of observations before and
after the changepoint if there is one. Therefore, we assume

(A2) k∗ = [γN ] for some 0 < γ < 1, if H1 holds.

We consider a test based on a statistic of cumulative sum (CUSUM) type. First,
we have to estimate the parameter θ to get the sample residuals ε̂t. As a parameter
estimate we consider the conditional least-squares (CLS) estimate θ̂N which minimizes

QN(θ) =

N∑
t=1

(
Xt − gθ(Xt−1)

)2
=

N∑
t=1

qt(θ)

over θ ∈ Θ. For the linear Poisson autoregression (1.1) we have by a straightforward
calculation (compare also [32]),

θ̂N,2 = α̂N = ρ̂N , θ̂N,1 = ω̂N = (1 − α̂N)XN (2.3)

where XN , ρ̂N denote the sample mean and the lag 1 sample autocorrelation of the
data. From the parameter estimates, we get the sample residuals and their cumulative
sums

ε̂t = Xt − gθ̂N
(Xt−1), t = 1, . . . , N, ŜN(k) =

k∑
t=1

ε̂t, k = 1, . . . , N. (2.4)

As test statistic we use the maximum of the normalized cumulative sums

TN = max
1≤k<N

√
N

k(N − k)

∣∣ŜN(k)
∣∣.

Such statistics are common tools for changepoint detection. Originally, they were
derived as the maximum likelihood statistic in a sequence of independent normal
random variables with constant variance and a mean that changes from μ0 to μ∗

0 at
some unknown time. This statistic converges almost surely to infinity (as can be
seen by the law of iterated logarithm) but using appropriate normalizing factors one
obtains a distributional convergence to the Gumbel extreme value distribution (cf.
Theorem 2.3). Because the convergence is slow and many practitioners are not used
to this kind of convergence in hypothesis testing, the following related statistics are
often considered:

TN,2 = max
τN≤k≤N−τN

√
N

k(N − k)

∣∣ŜN(k)
∣∣,

TN,3 = max
1≤k<N

(
N2

k(N − k)

)β
1√
N

∣∣ŜN(k)
∣∣
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for τ > 0 and 0 ≤ β < 1/2. These two statistics converge in distribution to
supτ<t<1−τ |B(t)| resp. sup0<t<1 |B(t)|/(t(1− t))β. Analogous results for these statis-
tics can be obtained along the lines of the proofs for TN . For details and further
references we refer to the monograph by Csörgő and Horváth [3].

Fokianos and Fried [10] recently have also considered changepoint detection for lin-
ear INGARCH processes. Beyond the type of processes considered, i.e. nonlinear
INARCH(1) compared to linear INGARCH(p,q), their approach differs from ours as
they are interested in deterministic changes of the conditional means. In terms of
model (1.1), they consider the following situation:

E{Xt|Ft−1} = λt = gθ(Xt−1) + νzt

where the deterministic series zt may represent various types of intervention effects
and the hypothesis of no change corresponds to ν = 0. In case of a level shift where
zt = 0, t ≤ k∗, and zt = 1, t > k∗, this intervention model and our approach (2.1) with
a change solely in the constant parameter θ1 of (1.5) coincide up to asymptotically
negligible differences. However, the model of Fokianos and Fried allows for a larger
variety of dependencies of the level on time, e.g. transient level shifts and additive
outliers, whereas our model allows for changes in the way how λt depends on past
data. The latter is of interest in certain practical problems. Franke and Seligmann
[13] discuss, e.g., the effectiveness of a drug on epileptic seizure counts. Epileptic
seizures themselves stress the brain and make subsequent seizures more likely. There-
fore, a positive correlation between the counts Xt, Xt−1 is plausible and can be verified
with the data. The drug was, among other effects, meant to improve recovery of the
brain and, therefore, to reduce this kind of dependence. In the simple model (1.1)
this corresponds to a change in the autoregressive parameter α.

2.1 Asymptotics of the CLS estimate

Weiß [32] studied the asymptotics of the CLS estimates for the linear Poisson autore-
gression (1.1), proving, e.g., consistency and asymptotic normality. We generalize
those results to the nonlinear model (1.3) and extend them to the situation where
a changepoint is present in the sample. Observe, that under the alternative H1, the
estimate θ̂N will converge neither to θ0 nor to θ∗0 but to some θ̃0 which is defined in
the following manner. First, we modify the summands qt(θ) = (Xt − gθ(Xt−1))

2 of
QN (θ) slightly by introducing

q̃t(θ) =

{(
Yt − gθ(Yt−1)

)2
t ≤ [γN ](

Y ∗
t − gθ(Y

∗
t−1)

)2
t > [γN ],

and we set Q̃N (θ) =
∑N

t=1 q̃t(θ). We have qt(θ) = q̃t(θ) for all t under the hypothesis
H0 as, then, Xt = Yt for all t. Otherwise, qt(θ), q̃t(θ) differ only at the changepoint
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such that the difference between QN (θ) and Q̃N (θ) becomes negligible for increasing
N . Let

e(θ) = γ Eq̃1(θ) + (1 − γ)Eq̃N (θ).

We have to assume existence and uniqueness of the minimizer θ̃0 of e(θ):

(A3) There is a unique θ̃0 ∈ Θ such that e(θ̃0) = minθ∈Θ e(θ), and θ̃0 lies in
the interior of Θ.

To show convergence of θ̂N to θ̃0, we need a contraction property of the autoregressive
function gθ(x). Among other features, it guarantees the existence of a stationary and
ergodic solution of (1.3) by Theorem 3.1 of Neumann [22].

(A4) For all θ ∈ Θ, gθ(x) is uniformly Lipschitz in x with constant Lθ < 1:∣∣gθ(x) − gθ(x
′)
∣∣ ≤ Lθ|x − x′| for all x, x′ ∈ N0.

For the simple model (1.1), (A4) is equivalent to assuming α < 1. Additionally, we
need some regularity of gθ(x) as a function of the parameter. ∇ and ∇2 denote the
gradient and the Hessian w.r.t. to θ.

(A5) gθ(x) is twice continuously differentiable w.r.t. θ for all x ∈ N0.

(A6) If {Yt} is a stationary solution of (1.3) with θ = θ0 or θ = θ∗0,

E sup
θ∈Θ

g2
θ(Yt) < ∞, E sup

θ∈Θ
||∇gθ(Yt)∇T gθ(Yt)|| < ∞,

E
(
Yt sup

θ∈Θ
||∇2gθ(Yt−1)||

)
< ∞.

For linear Poisson autoregressions (1.1), (A5) is obvious, and (A6) is automatically
satisfied if α < 1.

Theorem 2.1. Assume that X0, . . . , XN are generated by model (2.1) where {Yt}, {Y ∗
t }

are independent stationary Poisson autoregressions (1.3). Moreover, let (A1)-(A6)

be satisfied. Then, the conditional least-squares estimate θ̂N is strongly consistent for
θ̃0:

θ̂N → θ̃0 a.s. for N → ∞.

If we additionally assume

(A7) The Hessian ∇2e(θ̃0) is positive definite,

(A8) E
(
Yt − gθ̃0

(Yt−1)
)4+ν

< ∞, E
(
Y ∗

t − gθ̃0
(Y ∗

t−1)
)4+ν

< ∞ for some ν > 0,
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we also have asymptotic normality of θ̂N :

Theorem 2.2. If, additionally to the assumptions of Theorem 2.1, (A7), (A8) are
satisfied, we have

√
N(θ̂N − θ̃0) −→

d
N (0, A−1BA−1) for N → ∞

with A = ∇2e(θ̃0) and, with ∇Q̃N (θ) denoting the gradient of Q̃N(θ) w.r.t. θ,

B = lim
N→∞

1

N
E
(∇Q̃N(θ̃0)∇T Q̃N (θ̃0)

)
.

Mark that condition (A7) is automatically satisfied for the linear Poisson autoregres-
sion (1.1) as, then,

A = 2γ

(
1 EY0

EY0 E(Y0)
2

)
+ 2(1 − γ)

(
1 EY ∗

N−1

EY ∗
N−1 E(Y ∗

N−1)
2

)
,

by a straightforward calculation, and det(A) = 2γvarY0+2(1−γ)varY ∗
N−1 > 0. More-

over, (A8) is also satisfied provided the autoregressive parameters are less than 1 as,
then, all moments of Yt, Y

∗
t exist by Proposition 6 of Ferland et al. [8].

In case of a linear Poisson autoregression (1.1) with parameter vector θ0 = (ω, α) and
no change, one can easily check that θ̃0 = θ0 and hence Theorems 2.1 and 2.2 reprove
the consistency and asymptotic normality of the CLS estimates already obtained in
Weiß [32].

2.2 The test statistics under the hypothesis

In this section, we derive the asymptotic distribution of the test statistic TN under
the hypothesis. This allows to derive critical values for a test of the null hypothesis of
no change which asymptotically has the prescribed level. We need a further condition:

(A9) The (2 + ν)th central moment of ∇gθ0(Yt) exists for some ν > 0.

This condition is satisfied for the model (1.1) with α < 1 as ∇gθ0(y) = (1, y)T and all
moments of Yt exist by Proposition 6 of Ferland et al. [8].

Using the abbreviations

a(u) =
√

2 log u, b(u) = 2 log u +
1

2
log log u − 1

2
log π,

we have
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Theorem 2.3. Let the assumptions of Theorem 2.2 and (A9) be satisfied. If the
hypothesis H0 holds, i.e. Xt = Yt, t = 0, . . . , N, we have

pr
(

a(log N)
TN

τ
− b(log N) ≤ x

)→ exp(−2e−x) for N → ∞

This result involves the unkown variance τ 2 of the residuals εt. The following corol-
lary shows that we may replace it by the sample variance of the sample residuals.
Observe that, by assumption (1.5) and by the definition of the CLS estimates, the
sum of ε̂1, . . . , ε̂N and therefore their sample mean is 0. For the details, compare the
proof of Lemma 4.1.

Corollary 2.1. Under the assumptions of Theorem 2.3

τ̂ 2 =
1

N − d

N∑
t=1

ε̂ 2
t = τ 2 + Op

(
1√
N

)
.

2.3 The test statistics under the alternative

In this section, we have a look at the asymptotic behaviour of the test statistic under
the alternative which implies consistency of the test, i.e. asymptotic power 1. We need

(A10) |EYt − Egθ̃0
(Yt−1)| = |Egθ0(Yt−1) − Egθ̃0

(Yt−1)| = C > 0.

From (A3), we have ∇e(θ̃0) = 0 for large enough N , and, looking only at the derivative
w.r.t. θ1, we get in view of (1.5)

|EY ∗
t − Egθ̃0

(Y ∗
t−1)| =

γ

1 − γ
|EYt − Egθ̃0

(Yt−1)|. (2.5)

Therefore, (A10) can be equivalently expressed as |EY ∗
t − Egθ̃0

(Y ∗
t−1)| > 0. (A10)

is kind of an identifiability condition, excluding θ̃0 = θ̃∗0 and some other degenerate
situations.

In case of a linear Poisson autoregression (1.1) with parameter θ0 = (ω, α) before
the change and θ∗0 = (ω∗, α∗) after the change, (A10) simplifies considerably. Us-
ing gθ̃0

(y) = ω̃0 + α̃0y and (2.5), a straightforward calculation shows that (A10) is
equivalent to

EY1 =
ω

1 − α
�= ω∗

1 − α∗ = EY ∗
1 ,

i.e. the unconditional mean changes at k∗. This is a typical condition needed if test
statistics are based on estimated residuals and even occur in a simple linear regression
situation with continuous errors (cf. Hušková and Koubková [17]).
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Theorem 2.4. Let the assumptions of Theorem 2.3 and (A10) be satisfied. If the
alternative H1 holds, we have for alle c > 0

pr
(

a(log N)
TN

τ
− b(log N) ≥ c

)→ 1 for N → ∞

As a by-product, we get a consistent estimate of the changepoint if there is one, i.e.
if the alternative holds. It is the point in time where the maximum of the absolute
cumulative sums is attained.

Corollary 2.2. If the assumptions of Theorem 2.4 hold, we have under the alternative
H1

k̂∗

N
−→

p
γ where k̂∗ = arg max

1≤k<N
|ŜN(k)|, i.e. |ŜN(k̂∗)| = max

1≤k<N
|ŜN(k)|.

0 20 40 60 80 100 120 140 160 180 200
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Figure 1: Poisson autoregression with parameters ω = 1, α = 0.15.

3 Numerical examples

In this section, we look at the practical performance of the changepoint test for some
artificial and real data. The parameters of the simulated data are chosen such that
they roughly match the two subsequent real data examples regarding visual appear-
ance of the time series and sample size. In all cases, the changepoint test procedure
based on Theorem 2.3 works quite well even though the sample size was around 200
only and not excessively large. Using Corollary 2.1, we replaced the standard devia-
tion τ of the residuals, showing up in the asymptotic distribution of the test, by the
sample standard deviation τ̂ of the sample residuals ε̂1, . . . , ε̂N .
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3.1 Artificially generated data

First, we generate some data X0, . . . , XN , N = 200, from the linear Poisson autore-
gression (1.1) with parameters ω = 1, α = 0.15. The data are shown in Figure
1. Then, we calculate the CLS estimate of the parameters from (2.3) resulting in
ω̂ = 0.945, α̂ = 0.178. Next, we calculate the residuals ε̂t and the standardized cumu-

lative sums TN(k) =
√

N
k(N−k)

|ŜN(k)|, 1 ≤ k < N . Finally, for some level 0 < φ < 1,

we calculate

C = τ̂
log 2 − log(log 1

1−φ
) + b(log N)

a(log N)
,

such that, by Theorem 2.3, the changepoint test rejects the hypothesis H0 asymptot-
ically on the level φ iff TN = max1≤k<N TN(k) < C.

0 20 40 60 80 100 120 140 160 180 200
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2.5
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3.5

4

4.5

Figure 2: Standardized cumulative sums (hypothesis)

Figure 2 shows the standardized cumulative sums TN(k) as the solid line and the
bound C of significance (for φ = 0.05) as the dashed horizontal line. As TN (k) stays
well below the bound C, the hypothesis is accepted.

The second data set X0, . . . , XN , N = 200, shown in Figure 3, has a changepoint
at time k∗ = 100. It consists of two linear Poisson autoregressions with parameters
ω = 1, α = 0.5 before and ω = 0.3, α = 0.15 after the changepoint. Figure 4 shows
the corresponding standardized cumulative sums with the vertical line marking the
changepoint. A changepoint is detected by the level φ = 0.05 test, and the estimated
changepoint is k̂∗ = 99, compare Corollary 2.2.
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Figure 3: Poisson autoregression with change of parameters at t = 100.
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Figure 4: Standardized cumulative sums (alternative)

3.2 Epileptic seizure counts

Daily counts of epileptic seizures are an important source of information in evaluat-
ing the effectiveness of various treatments and, in particular, of the administration
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of drugs against epilepsy. Such data {Xt} show correlation in time as well as a sig-
nificant amount of overdispersion, i.e. EXt < varXt. To model those effects, Albert
[1] considered a hidden Markov chain model controlled by a Markov chain with two
states and data, which are independent Poisson distributed conditional on the hidden
state variable. Franke and Seligmann [13] started from integer-valued autoregressions
of order 1 and introduced overdispersion by considering innovations with a Poisson
mixture distribution. Here, we use the quite parsimonous linear Poisson autoregres-
sion of order 1 which also shows the desired overdispersion by (1.2). Mark that this
model requires only two parameters, whereas the model by Albert has 4 parameters
(2 for the hidden Markov chain and 2 Poisson parameters) and the model by Franke
and Seligmann has 3 parameters (2 Poisson parameters for the mixture distribution
and the autoregressive parameter).

The data are part of a larger clinical study where the effect of a drug on partial
seizures has been investigated. More details about the background of the data are
given by Franke and Seligmann [13]. Here, we are only interested in the applicability
of the above changepoint detection method to such data. During the study, the num-
ber of epileptic seizures was first recorded for some time under the usual medication.
Then, from a certain day onwards, the new drug was additionally administered. In a
second control group, a placebo was handed out to the patients instead. The test has
to decide if there is a change in the structure of the time series of counts. Mark that
this is not a classical straightforward changepoint detection problem as we expect the
change, if at all, to happen shortly after the change of medication, but we do not
exploit this information for decision making. The following study only serves as an
illustration for the performance of the changepoint test in a realistic setting.

Figures 5 and 7 show the daily seizure counts for a patient from the control group resp.
the test group. Figures 6 and 8 display the corresponding standardized cumulative
sums together with the bound of significance. The vertical lines mark here the date
where the change of medication took place. For the data from the placebo group, the
test statistic, i.e. the maximum of the curve in Figure 6, is too small to raise some
doubt and much less to reject the hypothesis that the administration of placebo has
no effect on the time series of counts. Figure 8, on the other hand, shows a highly
significant changepoint at k̂∗ = 81, i.e. at the day after the first administration of the
drug. Mark, that not all time series of seizure counts from the test group showed a
significant changepoint; for some patients, epileptic seizures were very rare from the
beginning, so it was not possible to show a further reduction due to the drug. For
other patients in the test group, the estimated changepoint was significant, but not
close to the change of medication; the structure of the time series switched to the new
state considerably later, perhaps an indication for a certain retardation of the drug
effect at some patients.
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Figure 5: Epileptic seizure counts (placebo group), change of medication at t = 83.
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Figure 6: Standardized cumulative sums (placebo group)
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Figure 7: Epileptic seizure counts (test group), change of medication at t = 80.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

9

10

Figure 8: Standardized cumulative sums (test group)
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4 Appendix

Before starting with the proofs, let us summarize some properties of nonlinear Pois-
son autoregressions (1.3) in the following corollary which follows immediately from
Theorems 2.1 and 3.1 of Neumann [22].

Corollary 4.1. Assume (A4). Then, there exists a stationary ergodic time series
{Xt} of counts satisfy (1.3) which is β-mixing (also called absolutely regular, compare
Doukhan [6] ) with exponential rate. Moreover, Eλ2

t = Eg2
θ(Xt−1) < ∞.

From the last statement, we also have

EX2
t = EE{X2

t |Ft−1} = E(λt + λ2
t ) < ∞ and E ε2

t = E(Xt − λt)
2 < ∞. (4.1)

4.1 Proofs of Section 2.1

As usual for consistency proofs, we first show uniform convergence of the empirical
loss.

Proposition 4.1. Let (A1), (A2), (A4)-(A6) be satisfied. Then, for N → ∞,

a) sup
θ∈Θ

∣∣ 1

N
Q̃N(θ) − e(θ)

∣∣→ 0 a.s.

b) sup
θ∈Θ

∣∣∣∣ 1

N
∇2Q̃N (θ) −∇2e(θ)

∣∣∣∣→ 0 a.s.

where ∇2 denotes the Hessian w.r.t. θ.

Proof: Let us first consider the situation where the hypothesis holds, i.e. where
Xt = Yt, 0 ≤ t ≤ N. By Corollary 4.1, {Yt} is stationary and ergodic, and, hence,
q̃t(θ) = (Yt−gθ(Yt−1))

2,∇2q̃t(θ) are (pointwise for each θ ∈ Θ) stationary and ergodic.
From assumption (A6), we get, using that Yt ∈ N0, i.e. Yt = 0 or Yt ≥ 1,

E sup
θ∈Θ

q̃t(θ) < ∞ , E sup
θ∈Θ

‖∇2q̃t(θ)‖ < ∞.

Now, the assertion follows from the uniform law of large numbers of Ranga Rao
(Theorem 6 of [26]) for stationary and ergodic processes.

Under the alternative, that there is a changepoint k∗ = [γN ], we have to apply the
same kind of argument before and after the changepoint. E.g., we have

1

N
Q̃N(θ) =

[γN ]

N

1

k∗

k∗∑
t=1

(Yt − gθ(Yt−1))
2 +

N − [γN ]

N

1

N − k∗

N∑
t=k∗+1

(Y ∗
t − gθ(Y

∗
t−1))

2

→ γE(Yt − gθ(Yt−1))
2 + (1 − γ) E(Y ∗

t − gθ(Y
∗
t−1))

2 = e(θ)
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uniformly in θ ∈ Θ.

Proof of Theorem 2.1:
The result follows immediately from Proposition 4.1 a) and the identifiability condi-
tion (A3) by applying Lemma 3.1 of Pötscher and Prucha [25].

Proof of Theorem 2.2:
i) First, we consider the case where the hypothesis Xt = Yt, 0 ≤ t ≤ N, holds. By
the definition of θ̃0 and assumptions (A3)-(A6), we have

0 = ∇e(θ̃0) = ∇Eq̃t(θ̃0) = E∇q̃t(θ̃0)

using dominated convergence and E supθ∈Θ ‖∇q̃t(θ)‖ < ∞ which follows from (A6),
(4.1) and the Cauchy-Schwarz inequality.

From Corollary 4.1 and Proposition 1.1.1 of Doukhan [6], {Yt} is also α-mixing with
exponential rate. As

∇q̃t(θ̃0) = −2(Yt − gθ̃0
(Yt−1)) ∇gθ̃0

(Yt−1) = Zt

is a measurable function of (Yt, Yt−1), it has the same kind of mixing condition. There-
fore, together with (A8), we may apply the strong invariance principle for α-mixing
time series of Kuelbs and Philipp (Theorem 4 of [20]), compare also Dehling and
Philipp [5], to get that

Bij =

∞∑
k=−∞

cov(Zti, Zt+k,j)

converges absolutely for all 1 ≤ i, j ≤ d, and, with W(s) denoting a d-variate Brownian
motion with covariance matrix B = (Bij)1≤i,j≤d on an appropriate probability space

1√
s

{∑
t≤s

Zt − W (s)

}
= O

(
1

sr

)
a.s. for some r > 0. (4.2)

In particular we have

1√
N
∇Q̃N (θ̃0) =

1√
N

N∑
t=1

Zt −→
d

N (0, B) (4.3)

and

B = lim
N→∞

1

N

N∑
s,t=1

EZtZ
T
s = lim

N→∞
1

N
E∇Q̃N(θ̃0)∇T Q̃N (θ̃0).
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ii) If the alternative holds, i.e. Xt = Yt, t ≤ k∗ and Xt = Y ∗
t , t > k∗, we have to

apply the same kind of argument separately before and after the changepoint. We
still have ∇q̃t(θ̃0) = Zt, t ≤ k∗, but

∇q̃t(θ̃0) = −2(Y ∗
t − gθ̃0

(Y ∗
t−1)) ∇gθ̃0

(Y ∗
t−1) = Z∗

t , t > k∗,

such that

1√
N
∇Q̃N(θ̃0) =

√
k∗

N

1√
k∗

k∗∑
t=1

Zt +

√
N − k∗

N

1√
N − k∗

N∑
t=k∗+1

Z∗
t

=

√
k∗

N

1√
k∗

k∗∑
t=1

(Zt − EZt) +

√
N − k∗

N

1√
N − k∗

N∑
t=k∗+1

(Z∗
t − EZ∗

t ) + RN

where

RN =
√

N

(
k∗

N
EZt +

N − k∗

N
EZ∗

t

)
=

√
N

(
γEZt + (1 − γ)EZ∗

t + O

(
1

N

))
=

√
N

(
∇e(θ̃0) + O

(
1

N

))
= O

(
1√
N

)
as ∇e(θ̃0) = 0. Using independence of {Yt}, {Y ∗

t } and, hence of {Zt}, {Z∗
t }, we have,

using i), that 1√
N
∇Q̃N(θ̃0) consists of two independent asymptotically normal com-

ponents with mean 0, and, hence, (4.3) also holds under the alternative.

iii) We now get asymptotic normality of θ̃N by the delta method as usual. For some

θ†N ∈ Θ with ||θ†N − θ̃0|| ≤ ||θ̂N − θ̃0||, we have from the mean-value theorem

0 = ∇Q̃N(θ̂N ) = ∇Q̃N (θ̃0) + ∇2Q̃N (θ†N)(θ̂N − θ̃0)

and therefore

− 1√
N
∇Q̃N(θ̃0) =

1

N
∇2Q̃N (θ†N)

√
N(θ̃N − θ̃0).

The left-hand side is asymptotically normal with mean 0 and covariance matrix B by
i) and ii). As, by Theorem 2.1, θ̂N → θ̃0 a.s. and, hence, θ̂†N → θ̃0 a.s. too, we get
by applying Proposition 4.1 b) that the right-hand side is asymptotically equivalent

to A
√

N(θ̂N − θ̃0). The assertion of the theorem immediately follows from Slutsky’s
Lemma.

4.2 Proofs of Section 2.2

The following lemma allows to replace the sample residuals ε̂t by the centered residuals

ε0
t = εt − 1

N

N∑
s=1

εs , t = 1, . . . , N,

in the test statistic TN without changing the asymptotics.
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Lemma 4.1. Under the assumptions of Theorem 2.3,

max
1≤k<N

√
N

k(N − k)

∣∣∣∣ k∑
t=1

(ε̂t − ε0
t )

∣∣∣∣ = Op

(√
log log N

N

)

Proof: By (A5), (A6), and using that Yt−1 = 0 or Yt−1 ≥ 1 and that Θ is compact,
we have E(supθ∈Θ ‖∇2gθ(Yt−1)‖) < ∞. Again, an application of the uniform law of
large numbers of Ranga Rao (Theorem 6.4 of [26]) implies, similar to the argument
in the proof of Proposition 4.1,

sup
1≤k<N

1

k

k∑
t=1

‖∇2gθ(Yt−1)‖ = Op(1)

uniformly in θ ∈ Θ, and, from a Taylor expansion, we get, uniformly in k ≤ N,

1

k

k∑
t=1

(
gθ̂N

(Yt−1) − gθ0(Yt−1)
)

=
1

k

k∑
t=1

∇gθ0(Yt−1)(θ̂N −θ0)+Op(||θ̂N −θ0||2). (4.4)

Setting
Zt = ∇gθ0(Yt−1) − E∇gθ0(Yt−1)

we get, using (A9) and the same kind of argument as in the proof of Theorem 2.2,
that {Zt} satisfies a strong invariance principle (4.2) which implies a bounded law of
the iterated logarithm, compare Theorem 6 of Dehling and Philipp [5],

k∑
t=1

Zt = O(
√

k log log k) a.s. (4.5)

From (1.5)

∂

∂θ1
QN (θ̂N) = −2

N∑
t=1

(Yt − gθ̂N
(Yt−1)) = −2

N∑
t=1

ε̂t.

By Theorem 2.1, θ̂N → θ0 a.s. and, therefore, θ̂N will be in the interior of Θ for large
enough N , implying ∂

∂θ1
QN (θ̂N ) = 0 by definition of θ̂N . Hence, with Ut = ε̂t − εt =

gθ0(Yt−1) − gθ̂N
(Yt−1)

k∑
t=1

(ε̂t − ε0
t ) =

k∑
t=1

(Ut − UN ), UN =
1

N

N∑
s=1

Us

and, with Vt = ∇gθ0(Yt−1), we have from (4.4)

1

k

k∑
t=1

(ε̂t − ε0
t ) = −1

k

k∑
t=1

(Vt − V N)(θ̂N − θ0) + Op(‖θ̂N − θ0‖2).
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By the same kind of argument as in part i) of the proof of Theorem 2.2, we have

that V N − E Vt = Op(
1√
N

). As, by Theorem 2.2, θ̂N − θ0 = Op(
1√
N

), too, and as
Zt = Vt − E Vt, we have

1

k

k∑
t=1

(ε̂t − ε0
t ) = −1

k

k∑
t=1

Zt (θ̂N − θ0) + Op

(
1

N

)
. (4.6)

The same assertion holds with N−k replacing k and summation from t = k+1, . . . , N.
By an elementary calculation, we have√

N

k(N − k)

∣∣∣∣ k∑
1

(ε̂t − ε0
t )

∣∣∣∣ =

√
N

k(N − k)

∣∣∣∣ k∑
1

(Ut − UN)

∣∣∣∣
=

√
k(N − k)

N

∣∣∣∣1k
k∑

t=1

(Ut − UN) − 1

N − k

N∑
t=k+1

(Ut − UN)

∣∣∣∣
=

√
k(N − k)

N

∣∣∣∣1k
k∑

t=1

(ε̂t − ε0
t ) −

1

N − k

N∑
t=k+1

(ε̂t − ε0
t )

∣∣∣∣
Combining (4.5) and (4.6) and using again Theorem 2.2, we finally get the assertion
of the lemma.

Proof of Theorem 2.3:
By Lemma 4.1, we may replace ε̂t in the test statistic TN by ε0

t if the hypothesis holds.
By the same argument as in the proof of Theorem 2.2, we have the strong invariance
principle (4.2) also for Zt = εt = Yt − gθ0(Yt−1). Now, we can replace εt by i.i.d.
normal variables ξt with mean 0 and variance τ 2 = var εt using standard arguments
from changepoint analysis which we sketch now. For more details and references, we
refer to the book by Csörgö and Horváth [3].

Recall Eεt = 0. The invariance principle (4.2) implies a law of the iterated logarithm
from which we get

max
1≤k≤log N

√
N

k(N − k)

∣∣∣∣ k∑
t=1

ε0
t

∣∣∣∣ = op

(
b(log N)

a(log N)

)
and an analogous expression for the maximum over N − log N ≤ k < N. The same
kind of assertion also holds for ξ0

t = ξt − 1
N

∑N
s=1 ξs instead of ε0

t . This implies

pr

(
a(log N) max

1≤k<N

√
N

k(N − k)

∣∣∣∣ k∑
t=1

ε0
t

∣∣∣∣− b(log N) ≤ y

)

= pr

(
a(log N) max

log N≤k≤N−log N

√
N

k(N − k)

∣∣∣∣ k∑
t=1

ε0
t

∣∣∣∣− b(log N) ≤ y

)
+ o(1)
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and, again from the invariance principle (4.2)

max
log N≤k≤N−log N

√
N

k(N − k)

∣∣∣∣ k∑
t=1

ε0
t −

k∑
t=1

ξ0
t

∣∣∣∣ = op(1)

which finishes the proof.

Proof of Corollary 2.1:
By the definition of ε̂t, εt:

N∑
t=1

ε̂2
t =

N∑
t=1

ε2
t − 2

N∑
t=1

εt

(
gθ̂N

(Yt−1) − gθ0(Yt−1)
)

+

N∑
t=1

(
gθ̂N

(Yt−1) − gθ0(Yt−1)
)2

.

From the proof of Theorem 2.3, εt satisfies a strong invariance principle. As, from
(A8), Eε4

t < ∞, and as Eε2
t = var εt = τ 2, we get from the central limit theorem

1

N − d

N∑
t=1

ε2
t = τ 2 + Op

(
1√
N

)
.

As in deriving (4.4), but with a Taylor expansion to first order only,

1

N − d

N∑
t=1

(
gθ̂N

(Yt−1) − gθ0(Yt−1)
)2

= Op

(
‖θ̂N − θ0‖2

)
= Op

(
1

N

)
by Theorem 2.2. Bounding the mixed term with the Cauchy-Schwarz inequality fin-
ishes the proof.

4.3 Proofs of Section 2.3

Proof of Theorem 2.4:
As in the proof of Lemma 4.1, we have for large enough N that

∑N
t=1 ε̂t = 0. Therefore,

ŜN(k∗) =
k∗∑
t=1

(
Xt − gθ̂N

(Xt−1)
)

= −
N∑

t=k∗+1

(Xt − gθ̂N
(Xt−1)). (4.7)

Under the alternative, we have Xt = Yt, 1 ≤ t ≤ k∗, Xt = Y ∗
t , k∗ + 1 ≤ t ≤ N.

Therefore, with B(θ), B∗(θ) as in assumption (A10),

ŜN(k∗) =

k∗∑
t=1

(Yt − gθ̂N
(Yt−1))

=

k∗∑
t=1

(Yt − EY1) + k∗B(θ̂N) + Op

(
sup
θ∈Θ

∣∣∣∣ k∗∑
t=1

(
gθ(Yt−1) − Egθ(Y0)

)∣∣∣∣
)

= [γN ] B(θ̂N ) + op(N)
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as we have the law of large numbers for {Yt} and, similar to the proof of Propo-
sition 4.1, a uniform law of large numbers for gθ(Yt−1). Mark that the condition
E supθ∈Θ |gθ(Yt−1)| < ∞ needed for applying Theorem 6.4 of Ranga Rao [26] is satis-
fied by assumption (A6). Using our regularity assumptions regarding the dependence

of gθ(x) on θ, in particular (A6), we have for some θ†N between θ̂N and θ̃0∣∣∣∣B(θ̂N ) − B(θ̃0)

∣∣∣∣ =

∣∣∣∣E∇T gθ†N
(Y0)(θ̂N − θ̃0)

∣∣∣∣ ≤ β‖θ̂N − θ0‖ = Op

(
1√
N

)
for some β > 0, applying Theorem 2.2. Hence, we have

ŜN(k∗) = [γN ] B(θ̃0) + op(N).

Analogously, we get by (4.7)

ŜN(k∗) = −(N − [γN ])B∗(θ̃0) + op(N).

By assumption (A10)

|ŜN(k∗)| ≥ N C min(γ, 1 − γ) + op(N)

from which we get, using (A2)

TN ≥
√

N

k∗(N − k∗)

[
N C min(γ, 1 − γ) + op(N)

]
=

√
NCγ + op(

√
N)

for a constant Cγ > 0 depending only on C and γ. The assertion of the theorem
follows immediately.

Proof of Corollary 2.2:
For 0 ≤ u ≤ 1, we define

R(u) =

{
u|B(θ̃0)| u ≤ γ

(1 − u)|B∗(θ̃0)| u > γ
,

where B(θ) = EYt − Egθ(Yt−1), B∗(θ) = EY ∗
t − Egθ(Y

∗
t−1). By (A3), we have

γ|B(θ̃0)| = (1 − γ)|B∗(θ̃0)|, such that R is a continuous function with a unique
maximum in u = γ by (A10).

From the proof of Theorem 2.4, we know

sup
0≤u≤1

∣∣∣∣ 1

N
|ŜN([uN ])| − R(u)

∣∣∣∣ = op(1).
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Hence, by standard arguments

k̂∗

N
= arg max

0≤u≤1

1

N
|ŜN([uN ])| → arg max

0≤u≤1
R(u) = γ.
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