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Abstract

We develop a procedure for monitoring changes in the error distribution of au-
toregressive time series while controlling the overall size of the sequential test. The
proposed procedure, unlike standard procedures which are also referred to, utilizes
the empirical characteristic function of properly estimated residuals. The limit be-
havior of the test statistic is investigated under the null hypothesis as well as under
alternatives. Since the asymptotic null distribution contains unknown parameters,
a bootstrap procedure is proposed in order to actually perform the test, and corre-
sponding results on the finite–sample performance of the new method are presented.
As it turns out, the procedure is not only able to detect distributional changes but
also changes in the regression coefficient.

Keywords: Empirical characteristic function, Change point analysis

AMS Subject Classification 2000: 62M10, 62G10, 62G20

1 Introduction

Change–point analysis for distributional changes with i.i.d. observations and the study
of structural breaks in the parameters of time series has received wide attention; see
for instance Yao (1990), Horváth (1993), Bai (1993), Davis et al. (1995), Einmahl and
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1 Introduction

McKeague (2003), Hušková et al. (2007), Hušková et al. (2008), and Gombay and Serban
(2009). For a full–book treatment on theoretical and methodological issues of change–
point analysis the reader is referred to Csörgő and Horváth (1997).

On the other hand works on structural breaks due to a change in the distribution of
a time series are relatively few. Hušková and Meintanis (2006a,b) develop detection
procedures for the distributional changes in i.i.d. observations. In this paper we extend
their results in two ways. First, the observations need no longer be independent. Instead,
we assume a linear autoregressive structure. Second, we operate within the framework
of on–line monitoring analysis whereby data are not observed at once, but arrive in a
sequential manner – one by one. Then, following each new observation we would like
to know whether our model is still capable of explaining the current observations. This
type of procedure plays an increasingly important role in applications as data sets are
often collected automatically or without significant costs. Examples include financial
data sets, e.g. in risk management (Andreou and Ghysels, 2006) or in CAPM models
(Aue et al., 2010), as well as medical data sets, e.g. when monitoring intensive care
patients (Fried and Imhoff, 2004). More applications can be found in other areas of
applied statistics. The consideration of such data sets leads to sequential statistical
analysis, which is also called online monitoring.

To fix the model, let {Xj , j = p+1, . . . , n} be an AR(p) process defined by the equation

Xj = βTXj−1 + εj , (1.1)

where Xj−1 = (Xj−1, . . . , Xj−p)T , and β = (β1, ..., βp)T is an unknown regression pa-
rameter. In (1.1) the errors εj are independent, each having a corresponding distribution
function Fj with mean zero and finite variance. Also the AR process is assumed to be
stationary i.e., the characteristic polynomial P (z) = 1− β1z − ...− βpzp, is assumed to
satisfy P (z) 6= 0,∀|z| ≤ 1.

The idea in the sequential testing methods which we consider is as follows: We suppose
that there exists a historic or training data set X1, . . . , XT , with no change, i.e. following
(1.1) with F1 = ... = FT . Practically this is the data set based on which we estimate
the appropriate parameters. In particular, we postulate model (1.1) with no change
in distribution and estimate β as well as the distribution F1 of ε1 from X1, . . . , XT .
Then we start monitoring, i.e. observe data XT+1, XT+2, . . . sequentially. After each
new observation, we decide whether there is evidence of a change, and in this case
we terminate the monitoring procedure and decide for the alternative. Otherwise we
continue monitoring.

Here we monitor for a change in distributional aspect of the errors εj , i.e. we wish to
test the hypothesis

H0 : Fj = F0, j = T + 1, T + 2, . . . vs.

H1 : FT+j = F0, j ≤ T + j0;FT+j = F 0 6= F0, j > T + j0, (1.2)

of a change in the distribution Fj , where F0, F
0, and the time of a change j0 ≥ 1, are

considered unknown. It turns out however that the monitoring schemes developed for
these distributional changes are also able to detect changes in the regression coefficient.

In view of the fact that the errors are unobserved, typically one computes the residuals

ε̂j = Xj − β̂
T

T XT
j−1, (1.3)
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from (1.1) by using some standard estimator β̂T := β̂T (X1, . . . , XT ) of β, such as the
least squares (LS) estimator, based only on the training data set X1, . . . , XT , and ful-
filling

√
T (β̂T − β) = OP (1), as T →∞.

Note that for asymptotic considerations we let the length of the historic data set T
go to infinity, hence the estimation of the model parameters from the historic data set
improves. However, the total number of observations is random (and possibly infinite)
as we stop monitoring as soon as we can reject.

Based on the estimated residuals in (1.3), several monitoring schemes may be devised,
each corresponding to a standard goodness–of–fit statistic. Traditional goodness–of–fit
tests however make use of the empirical distribution function (EDF) of these residuals,
whereas here we utilize the empirical characteristic function (ECF) of the residuals.
This approach was employed by Hušková and Meintanis (2006a,b) in order to test for
distributional changes of independent observations in an offline setting, and was found to
have a satisfactory performance. For earlier attempts to utilize the ECF in the context
of testing with time series the reader is referred to Hong (1999), Epps (1988) and Epps
(1987).

In particular, the Fourier formulation which we advocate here utilizes the Cramér-von-
Mises type statistics

TCF (j, γ) = ρj,T (γ)
∫ ∞
−∞
|φ̂T,T+j(u)− φ̂p,T (u)|2w(u)du, (1.4)

where

φ̂j1,j2(u) =
1

j2 − j1

j2∑
t=j1+1

eiubεt

is the ECF of the residuals. In (1.4), ρj,T (γ) denotes a weight function needed to control
the probability α of type–I error for the sequential test procedure, asymptotically, while
w(u) is an extra weight function introduced to smooth out the periodic components of
the ECF.

We reject the null hypothesis whenever for the first time it holds TCF (j, γ) ≥ cα for an
appropriately chosen critical value cα. In this case we stop monitoring, otherwise we
continue. The associated stopping rule is given by

τ(T ) =

{
inf{1 ≤ j < LT : TCF (j, γ) ≥ cα},
∞, if TCF (j, γ) < cα for all 1 ≤ j < LT .

We shall distinguish between open-end procedures where LT = ∞ and closed-end pro-
cedures where LT = bNT c+ 1 for some N > 0.

As in classical hypothesis testing, our aim is to control the overall value of α, i.e.

lim
T→∞

PH0(τ(T ) <∞) = α. (1.5)
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In this connection, Theorem 2.1 below shows how to choose the critical values such
that (1.5) holds, i.e. the procedure has asymptotic size α. Theorems 2.2 and 2.3 show
that this monitoring procedure detects a large class of alternatives with probability one
asymptotically, i.e.

lim
T→∞

PH1(τ(T ) <∞) = 1. (1.6)

Thinking of the monitoring procedure in terms of classical statistics yields the following
test statistic

CFT (γ) = CFT (ε̂p+1, ε̂p+2, . . . ; γ) := sup
1≤j<LT

TCF (j, γ) (1.7)

which is only used to obtain asymptotics, whereas calculation is performed sequentially
as already explained above.

We have pointed out that one can also develop related procedures based on empirical
distribution functions. To this end, denote by F̂T,T+j(z) and F̂p,T (z) the EDF based on
ε̂T+1, . . . , ε̂T+j and ε̂p+1, . . . , ε̂T , respectively. The corresponding Kolmogorov-Smirnov
statistic is then defined by

KST (γ) = sup
1≤j<LT

dj,T (γ) sup
z
|F̂T,T+j(z)− F̂p,T (z)| (1.8)

γ ∈ (0, 1]. The choice of dj,T (γ) corresponding to our choice (in the open-end procedure)
is

dj,T (γ) =
√
T
( j

T + j

)(1+γ)/2
.

The respective limit null distribution of KST (γ) is an asymptotically distribution free
functional of a two-dimensional Gaussian process. The advantage is that this limit dis-
tribution unlike the one we obtain for our procedure (cf. Theorem 2.1) does not depend
on the unknown error distribution. One can then either use a bootstrap test similar
to ours, or construct tests based on (simulated) asymptotic critical values. However, in
order to obtain these results (more precisely to obtain the analogue of our Lemma 6.2)
additional assumptions on the smoothness of the error distribution are needed.

Motivated by Bai (1994) in the nonsequential case, Lee et al. (2009) study procedures re-
lated to KST (γ). However, they use the different standardization dj,T (γ) =

√
T
(

T
T+j

)a
for some a > 0. EDF–based Cramér-von-Mises type test statistics can be developed
along the same line, but they also have the disadvantage that additional assumptions
on the smoothness of the error distribution are needed. More details on these type of
statistics including some comparative simulations can be found in Hlávka et al. (2010).

2 Asymptotic results

Here we present and discuss results on asymptotic distribution of the test statistic
CFT (γ) defined in (1.7) both under the null hypothesis and under some alternatives
leading to consistency in the sense of (1.5) as well as (1.6). Note that we suppress the
weight parameter γ, and write CFT for simplicity.
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Recall that we work with the sequence {Xj , j = p+ 1, . . . , n} following the model:

Xj = βTXj−1 + εj , j = p+ 1, . . . ,

whereXj−1 = (Xj−1, . . . , Xj−p)T , β is an unknown p-regression parameter, εj , j = 1, . . .
are innovations that fulfill under the null hypothesis the assumptions:

(A.1) {εj , j = 0,±1, . . . } are i.i.d. random variables with common distribution function
F0 having zero mean, positive variance and E |εj |4 <∞.

(A.2) The initial values X1, . . . , Xp are independent of εp+1, . . . , εn; βp 6= 0, and the roots
of the polynomial tp − β1t

p−1 − . . .− βp are less than one in absolute value.

(A.3) The vector Xp+1 = (Xp, . . . , X1)T of initial observations satisfies

Xp+1 =
∞∑
j=0

Bj ep+1−j , (2.1)

where

B =

(
β1, . . . , βp

Ip−1 O

)
and ek = (εk, 0, . . . , 0)T , (2.2)

with Ip−1 denoting the (p− 1)-dimensional unit matrix.

(A.4) β̂T is an estimator of β based on X1, . . . , XT with properties
√
T (β̂T − β) = OP (1), T →∞.

(A.5) Let w(t), t ∈ R1, be a symmetric function with properties∫
t4w(t)dt <∞.

Theorem 2.1. Let {Xt} follow model (1.1) and let assumptions (A.1)–(A.5) be satisfied.
Then the following asymptotic results hold for the test statistic CFT in (1.7) under the
null hypothesis of no change.

a) For the open-end procedure (i.e. LT =∞) it holds, as T →∞

CFT
D−→ sup

0<t<1

∣∣∣∣∣∣tγ
(∫

w(u) du− E

∫
cos ((ε1 − ε2)u)w(u) du

)
+
∞∑
q=1

λq
W 2
q (t)− t
t1−γ

∣∣∣∣∣∣ ,
where

ρj,T (γ) = T

(
j

T + j

)1+γ

, 0 < γ ≤ 1, (2.3)

Wq(·) are independent Wiener processes and λq are square-summable eigenvalues
which depend on the unknown underlying distribution function F0.
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b) For the closed-end procedure (i.e. LT = NT + 1) it holds, as T →∞,

CFT
D−→ sup

0<t<N
cw(t)

∣∣∣t(1 + t)
(∫

w(u) du− E

∫
cos ((ε1 − ε2)u)w(u) du

)
+
∞∑
q=1

λq (Wq,1(t)− tWq,2(1))2 − t(1 + t)
∣∣∣,

where ρj,T (γ) = j2

T cw

(
j
T

)
and cw(t) ≥ 0 continuous on (0, N ] such that there ex-

ists 0 ≤ α < 1 with limt→0 t
αcw(t) < ∞, Wq,1(·), Wq,2(·) are independent Wiener

processes and λq are as in a).

The theorem shows that the limit distribution depends on unknown quantities and does
not provide an approximation for critical values of the CF–statistic. Therefore a boot-
strap suitable for the above sequential setup is useful for practical applications and will
be discussed in Section 3 below. Also note that the conditions on the weight function
for the open-end procedure include in particular the weight functions as given for the
open-end procedure, and that the limit distribution of CFT is the same if we replace the
residuals ε̂j by εj .

Remark 2.1. The proposed procedure based on CFT defined in (1.7) can easily be ex-
tended to different residual-based models such as regression models or ARMA-sequences
among others. The key to the proofs is to be able to estimate the residuals εt by ε̂t, such
that the limit distribution of the resulting test procedure does not change.

Next we have a look at the asymptotic behavior of CFT under a class of alternatives.
In particular, Assumption (A.1) is replaced by the following assumption:

(B.1) {εj , j = 0,±1, . . . } are independent random variables having zero mean, positive
variance and finite moment E |εj |4 < ∞ and having the distribution function F0

for j ≤ T + j0 and F 0 for j > T + j0, for some j0 ≥ 0, F0 6= F 0.

Theorem 2.2. Let {Xt} follow model (1.1) and let assumptions (A.2)–(A.5) and (B.1)
be satisfied i.e. a change of the error distribution takes place. Then for the open-ended
procedure, as T →∞

CFT →∞, in probability.

Moreover, if j0 = bTt0c with some t0 ≥ 0 then, as T →∞

CFT /T →P sup
t0<t<∞

(
t

1 + t

)1+γ ( t− t0
t

)2 ∫
|ϕ0(u)− ϕ0(u)|2w(u)du

where ϕ0(t) and ϕ0(t) are characteristic functions before and after the change, respec-
tively. The assertion remains true for closed-end procedures if t0 < N and where the sup
is taken over the set t0 < t ≤ N .

The above theorem shows that our test procedure detects distributional changes as
required. However, the test procedure has also some power with respect to changes in the
autoregressive coefficient. So, one should apply a test for a change in the autoregressive
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parameter as well, which does not have power against distributional changes, in order
to distinguish between the two. Consider

Xj = βTXj−1 + δTXj−1I{j > T + j0}+ εj , j ≥ 1, (2.4)

where δ 6= 0 and j0 ≥ 1 are both unknown, all other symbols are as in model (1.1). As
in Hušková et al. (2007) we assume:

(B.2) The observations Xp+1, . . . , follow the above model with j0 = bTt0c, t0 ≥ 0;
X1, ..., Xp are independent of εp+1, . . . , εT , . . . ; βp 6= 0, the roots of the polyno-
mial tp − β1t

p−1 − . . . − βp are less than one in absolute value, βp + δp 6= 0, and
the roots of tp − (β1 + δ1)tp−1 − . . . − (βp + δp) are also less than one in absolute
value, δ 6= 0 fixed.

Theorem 2.3. Let model (2.4) fulfill (A.1), (B.2), (A.3)–(A.5), j0 = bTt0c for some
t0 ≥ 0, i.e. a change in the regression coefficient takes place. Then, for open-end
procedures, as T →∞,

CFT /T →P sup
t0<t<∞

( t

t+ 1

)1+γ( t− t0
t

)2
∫
|ϕ0(u)(ϕX(u)− 1)|2w(u)du

where ϕX(u) is the characteristic function of
∑p

j=1 δjZq−j with {Zq}q being an AR(p)
with parameters β + δ. The assertion remains true for closed-end procedures if t0 < N
and where the sup is taken over the set t0 < t ≤ N .

3 Bootstrap procedures

In order to apply the tests we need critical values. The standard approach is to use the
quantiles of the asymptotic distribution, however from Theorem 2.1 it is clear that this
is not feasible here as the limit distribution depends on too many unknown parameters.
Therefore, we will apply resampling methods to approximate the null distribution.

The simplest approach is a classical bootstrap based on the estimated residuals of the
training data: Let UT (p+1), . . . , UT (L̃T ) be i.i.d. uniform on p+1, . . . , T independent of
{Xt}, where we choose L̃T = LT −1 in case of the closed-end procedure and L̃T /T →∞
in case of the open-end procedure. Let

ε∗(t) = ε̂UT (t),

with ε̂j as in (1.3). Note that for the LS–estimator β̂T it holds that
∑T

j=p+1 ε̂j = 0,
so that the bootstrap errors have mean zero (conditionally), and therefore no extra
centering is required.

The bootstrap critical value cα(X1, . . . , XT ) is chosen minimal such that

P ∗T

(
CFT (ε∗(1), . . . , ε∗(L̃T )) ≤ cα(X1, . . . , XT )

)
≥ 1− α.

where P ∗T (·) = P (·|X1, . . . , XT ). We can easily simulate the above conditional distribu-
tion by drawing B random realizations of {UT (·)}.

The above bootstrap scheme only uses the training sample X1, . . . , XT , therefore the
following theorem holds under assumptions on the training set only, no additional as-
sumptions on the data after monitoring starts is needed.
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Theorem 3.1. If X1, . . . , XT follow model (1.1) fulfilling assumptions (A.1)–(A.5), then

cα(X1, . . . , XT ) P−→ cα,

where cα is the α-quantile of the asymptotic distribution in Theorem 2.1.

The above theorem shows that the bootstrap test has asymptotic size α and asymptotic
power one under the alternatives in Theorem 2.2 and 2.3. Asymptotically it is equiva-
lent to the asymptotic test which is not feasible as cα depends on too many unknown
parameters.

The above bootstrap procedure is not optimal in case of smaller training data sets,
which is not surprising as we create a data set of length LT from a dataset of length
T which is much smaller than LT . In the simpler location setting Kirch (2008) showed
in simulations that this in fact leads to a loss of power. Adaptations of the above
bootstrap schemes including observations obtained during monitoring are possible (cf.
Kirch (2008) for the location model as well as Hušková and Kirch (2010) for a change in
the regression coefficient), but these modifications lead to a substantial increase in the
technical difficulty of our proofs and will therefore not be considered here. More details
as well as some simulations can be found in Hlávka et al. (2010).

4 Simulation study

In the previous sections we derived monitoring procedures with an asymptotic overall
level α and asymptotic power 1 for a large class of alternatives. In this section we
conduct a small simulation study to see how the test behaves for small samples. A more
detailed simulation study including also some extensions and variations of the procedure
can be found in Hlávka et al. (2010).

As a weight function for the integral in (1.4) we use w(u) = wa(u) = exp(−a|u|), with
several values of a > 0. The weight function for the sequential procedure is given by
(2.3) for γ = 0.1 and γ = 1. We use a historic data set of T = 50 and T = 200 and
a monitoring length NT with N = 4. For the calculation of the bootstrap distribution
500 random bootstrap samples have been used.

The training sample is always an AR(1) process (1.1) with the regression parameter β =
β0 = 0.5 and normally distributed error terms with standard deviation sd(εi) = σ0 = 1.
The symbols β0 = β0 + δ and σ0 denote the value of the same parameters after the
change occurring at time j0.

We consider the following types of changes:

• Change in the regression coefficient.

• Change in scale.

• Change from a normal distribution to a Student t-distribution with 4 degrees of
freedom.

• Change from a normal distribution to a χ2-distribution with 4 degrees of freedom.
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4 Simulation study

Note that both, the Student t–distribution as well as the χ2-distribution, were centered
and standardized.

As usual we assess the quality of the tests by (i) the actually achieved level of the test
as well as the achieved power. However, in a sequential setup it is also of interest to
know (ii) how fast a change is detected by the proposed procedure.

To visualize the first two properties we use:

(i) Achieved Size-Power Curves (ASP)
The blue line corresponding to the null hypothesis shows the actual achieved level on
the y-axis for a nominal one as given by the x-axis. The red line corresponding to one
alternative shows the size-corrected power, i.e. the power of the test belonging to a true
level α test where α is given by the x-axis. These plots are based on 1 000 repetitions of
the procedure.

In order to visualize how fast changes are detected we show the:

(ii) Estimated density of the run length (EDR)
The run length is the point in time at which the null hypothesis is rejected. In the
plots it is calculated for a true size 5% test (not a nominal one). This is to obtain
comparable plots for all procedures without having to take size-differences into account,
which obviously have an important influence on the run length. The vertical dotted line
indicates where the monitoring starts. This is a lower bound for the run length but
– due to artefacts of the kernel density estimation procedure – it can happen that the
estimated density is positive there. The vertical solid line indicates the position of the
change. Note that the density does not integrate to one since it also attains positive
mass corresponding to the samples for which the null hypothesis was not rejected.

In Figure 4.1 we consider the influence of the shape of the weight function given by
(2.3), with respect to the value of γ. Some typical plots are shown for an early as well
as a late change. From these plots it becomes clear that γ = 0.1 detects early changes
better than the procedure based on γ = 1, but at the cost of having a high probability
of falsely detecting late changes before they occur. In addition we observe a power loss
for late changes (and moderate monitoring horizon). This behavior is well known in
sequential change–point analysis and has already been reported in different settings (cf.
e.g. Horváth et al. (2004); note that a γ close to 0 in our setting corresponds to a γ close
to 1/2 in their setting, while γ = 1 in our setting corresponds to γ = 0 in their setting
due to a different normalization). In Figure 4.1 the plots are only given for a = 1, but
other values of a lead to similar results.

With Figure 4.2 and Figure 4.3 we assess the influence of the parameter a, which de-
termines the shape of the weight function wa(u) of the CFT statistic. To this we fix
the value of γ at γ = 1. Also we compare the new procedure with the Kolmogorov-
Smirnov-type sequential test defined by (1.8). In Figure 4.2, plots include a change in
the AR-parameter as well as in the scale of the error distribution. From these plots it
becomes clear that intermediate values of a hold the level best. However, larger values
lead to more powerful procedures both in terms of overall detection rate as well as de-
tection delay while still having a reasonable size. They also yield better results than the
Kolmogorov-Smirnov-type test especially in the situation of a change in scale parameter.
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4 Simulation study

(a) Early change: j0 = 10

(b) Late change: j0 = 50

Figure 4.1: ASP and EDR plots for the CFT test with normal errors; change in the
regression parameter from β0 = 0.5 to β0 = 0.9 (γ = 0.1 and γ = 1.0, σ0 = σ0 = 1,
a = 1, T = 50, N = 4)

The plots in Figure 4.3 include changes in the distribution of the errors: From a normal
distribution, to a t4–distribution as well as to a χ2–distribution with 4 degrees of free-
dom. Corresponding results for the Kolmogorov-Smirnov-type test are also included.
According to Figure 4.3 a), i.e. T = 50 and a change from normal to t4, both pro-
cedures have a very low power for small samples (but are unbiased). Apparently, the
differences between the two distributions is not large enough to be detectable at a sat-
isfying power with only a historic sample of T = 50 at hand. However, this is not due
to the change-point setting or the sequential nature of the test, since even in a simple
(non-sequential) two-sample situation, both tests have a very low power in distinguishing
these two distributions; as an example, for two equally sized samples of length 50 we
obtain an empirical power (calculated from 500 simulations with 1000 bootstrap repli-
cates) of 0.1 for the CFT –test with a = 1, and a corresponding power of 0.072 for the
KS–test, each at nominal level 5%.

The size results depicted in Figure 4.3 are reasonable for all values of a, but best for
intermediate values of this parameter. Naturally, for the larger historic data set T = 200
(Figure 4.3 b)), the power increases and it becomes clear that in this situation small
values of a yield best results in terms of power and detection delay. Furthermore, our
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5 Conclusion

(a) Change in the AR-parameter: β0 = 0.9

(b) Change in the scale parameter: σ0 = 2

Figure 4.2: Dependency on a, fixed γ = 1, j0 = 10, T = 50, N = 4, β0 = 0.5, σ0 = 1,
normal errors: ASP- as well as EDR-Plots

procedure clearly outperforms the Kolmogorov–Smirnov type test. In Figure 4.3 c) and
d) analogous pictures for a change from a normal to a χ2-distribution with 4 degrees
of freedom can be found. The power is somewhat better than for the change to a t4–
distribution, but the general conclusions remain the same.

5 Conclusion

We propose goodness–of–fit procedures for the error distribution of AR models, in the
sequential set–up. The new tests utilize an L2–type discrepancy measure between a cou-
ple of empirical characteristic functions (ECFs) of the residuals; the first ECF includes
the residuals computed from a training data–set with no change in the distribution of
random errors, while the other ECF is based on the residuals after this training data–set
has been observed. Asymptotic results are provided both under the null hypothesis of
no change, as well as under alternative hypotheses. The latter results imply the con-
sistency of the proposed test in the case of a chance in the error distribution, but also
in the case of a change in the parameter of the underlying AR–model. Additionally, a
bootstrap procedure is proposed which is straightforward to apply, thereby circumvent-
ing the drawback that the asymptotic null distribution of the test statistic is parametric
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5 Conclusion

(a) Change from normal to t4: T = 50

(b) Change from normal to t4: T = 200

(c) Change from normal to χ2
4: T = 50

(d) Change from normal to χ2
4: T = 200

Figure 4.3: Dependency on a, fixed γ = 1, j0 = 1/5T , N = 4, β0 = β0 = 0.5, σ0 = σ0 =
1: ASP- as well as EDR-Plots
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6 Proofs

in nature. A simulation study supports our asymptotic results, by reporting empirical
level close to the nominal size even for small samples, and percentage of rejection under
alternatives which suggests that the new test is able to detect distributional changes
as well as changes in the autoregression parameter. Extra simulation results include
favorable comparisons with a Kolmogorov–Smirnov–type test.

6 Proofs

We start with the proofs of some auxiliary lemmas. D will denote a positive generic
constant.

Lemma 6.1. Let assumptions (A.2)–(A.3) and either (A.1) (null hypothesis) or (B.1)
(change in distribution) or (A.1) and (B.2) (change in regression coefficient) be satisfied.
Then for an arbitrary κ > 0 there exists A > 0 such that for η > 3/2

a) P

 max
1≤k≤Q

k−η

∥∥∥∥∥∥
T+k∑
j=T+1

Xq,j−1

∥∥∥∥∥∥
2

≥ A

 ≤ κ
b) P

 max
1≤k≤Q

k−η

∥∥∥∥∥∥
T+k∑
j=T+1

(Xq,j−1X
T
q,j−1 − E(Xq,j−1X

T
q,j−1))

∥∥∥∥∥∥
2

≥ A

 ≤ κ
c) max

k≥
√
T

∫ ∣∣∣∣∣∣1k
T+k∑
j=T+1

(
g(tεj)− Eg(tεj))

∣∣∣∣∣∣
2

w(t) dt = oP (1),

d) max
k≥
√
T

∫ ∣∣∣∣∣∣1k
T+k∑

j=T+k◦+1

(
g(tδTXq,j)− Eg(tδTXq,j)

)∣∣∣∣∣∣
2

w(t) dt = oP (1).

for any fixed q-dimensional vector δ and Xq,j = (Xj , . . . , Xj−q)T any function bounded
function g with bounded first derivative.

Proof. We start with the proof if either (A.1) or (B.2) holds. Assertion b) is given in
Lemma 4.2 in Hušková et al. (2007) for q = p, the assertion for q 6= p and a) follows
analogously. The key are the following moment bounds given in Corollary 4.1 in Hušková
et al. (2007) in addition to some Hájek-Rényi type inequalities. For some ρ ∈ (0, 1) it
holds

E|Xj−vXj−s| ≤ Dρ|v−s|, 1 ≤ v, s ≤ j, j ≥ p, (6.1)

|cov(Xj−vXj−s, Xj+h−vX
T
j+h−s)| ≤ Dρ2|h|, h ≥ 0, 1 ≤ v, s ≤ p, j ≥ p.

To prove c) first note that due to the boundedness of g it holds for any K > 0 that

∫ ∣∣∣∣∣∣1k
T+k∑
j=T+1

(
g(tεj)− Eg(tεj))

∣∣∣∣∣∣
2

w(t) dt

≤
∫
w(t) dt sup

|t|≤K

∣∣∣∣∣∣1k
T+k∑
j=T+1

(
g(tεj)− Eg(tεj))

∣∣∣∣∣∣
2

+ sup
x∈R

g2(x)
∫
|t|>K

w(t) dt,

13



6 Proofs

where the second summand becomes arbitrarily small for K large enough. Concerning
the first summand we apply a uniform law of large numbers for stationary and ergodic
sequences by Ranga Rao (1962). Here, the sequence is even i.i.d. up to T + k0 and
starting at T + k0 and the condition in Ranga Rao (1962) E sup|t|≤K |g(tε0)| < ∞ is
fulfilled due to boundedness of g. We get

sup
k≥
√
T

sup
|t|≤K

∣∣∣∣∣∣1k
T+k∑
j=T+1

(
g(tεj)− Eg(tεj))

∣∣∣∣∣∣
2

D= sup
k≥
√
T

sup
|t|≤K

∣∣∣∣∣∣1k
k∑
j=1

(
g(tεj)− Eg(tεj))

∣∣∣∣∣∣
2

→ 0 a.s.

for T →∞. This yields the assertion.

For the proof of d) first consider X̃j = (βT + δT )X̃j−1 + εj , j ≥ T + k0. Further assume
that X̃T+k0−1 fulfills (2.1) with βl replaced by βl + δl and all εl following F 0. By (B.2)
X̃ is stationary and ergodic and the same arguments as in c) lead to the assertion with
Xj replaced by X̃j . Similar arguments as in Section 4 in Hušková et al. (2007) yield

|Xj − X̃j | ≤ Cρj−T−k0‖XT+k0−1 − X̃T+k0−1‖ (6.2)

for some C > 0, 0 < ρ < 1. Since ‖XT+k0−1 − X̃T+k0−1‖ = OP (1) uniformly in T, k0 we
get by the mean value theorem and the fact that the first derivative of g is bounded

sup
k≥
√
T

sup
|t|≤K

∣∣∣∣∣∣1k
T+k∑

j=T+k◦+1

(
g(tδTXq,j)− Eg(tδTXq,j)

)∣∣∣∣∣∣
2

= oP (1) +OP (1)‖δ‖K sup
k≥
√
T

1
k

T+k∑
j=T+k0

ρj−T−k0 = oP (1).

Lemma 6.2. Under the assumptions of Theorem 2.1 respectively of Theorem 2.2 it holds
for the open-end as well as closed-end procedure that

sup
1≤j<LT

|TCF (j; γ)− TCF (j; γ; ε1, ε2 . . . )| = oP (1),

where TCF (j; γ; ε1, ε2 . . . ) denotes the test statistic (1.4) with ε̂i replaced by εi.

Proof. We will study the differences

Ĉk(t)− Ck(t), Ŝk(t)− Sk(t)

14



6 Proofs

where

Ĉk(t) =
1
k

T+k∑
j=T+1

cos(tε̂j)−
1
T

T∑
j=1+p

cos(tε̂j),

Ck(t) =
1
k

T+k∑
j=T+1

cos(tεj)−
1
T

T∑
j=1+p

cos(tεj),

Ŝk(t) =
1
k

T+k∑
j=T+1

sin(tε̂j)−
1
T

T∑
j=1+p

sin(tε̂j),

Sk(t) =
1
k

T+k∑
j=T+1

sin(tεj)−
1
T

T∑
j=1+p

sin(tεj).

By the Taylor expansion

cos(tε̂j) = cos(tεj)− t(ε̂j − εj) sin(tεj) +RjC(t)

where RjC(t) is a remainder term. Then Ĉk(t) can be decomposed:

Ĉk(t)− Ck(t) = Ĉk1(t) + Ĉk2(t)

with

Ĉk1(t) = −
(1
k

T+k∑
j=T+1

t(ε̂j − εj) sin(tεj)−
1
T

T∑
j=1+p

t(ε̂j − εj) sin(tεj)
)
,

Ĉk2(t) =
1
k

T+k∑
j=T+1

RjC(t)− 1
T

T∑
j=1+p

RjC(t).

Since
|RjC(t)| ≤ Dt2(β − β̂T )TXj−1X

T
j−1(β − β̂T )

for some positive D > 0 we also have

|Ĉk2(t)|2 ≤ Dt4
(β − β̂T )T

1
k

T+k∑
j=T+1

Xj−1X
T
j−1 +

1
T

T∑
j=p+1

Xj−1X
T
j−1

(β − β̂T)
2

.

Recall that by the Cauchy-Schwarz inequality xTAx ≤ ‖x‖2 ‖A‖F ≤ DxTAx ≤ ‖x‖2 ‖A‖,
where ‖ · ‖F denotes the Frobenius norm and ||.|| the Euclidean norm. Hence we get by
(A.4) and Lemma 6.1 that

|Ĉk2(t)|2 ≤ Dt4‖β − β̂T ‖4
∥∥∥∥∥∥1

k

T+k∑
j=T+1

Xj−1X
T
j−1

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
T

T∑
j=p+1

Xj−1X
T
j−1

∥∥∥∥∥∥
2

= OP (1)
t4

T 2
(6.3)

uniformly in k. Hence by (A.5)

max
1≤k<∞

T
( k

T + k

)1+γ
∫
|Ĉk2(t)|2w(t) dt = OP (1)

1
T

∫
t4w(t) dt = oP (1).
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Next we show the negligibility of Ĉk1(t). We use the decomposition

Ĉk1(t) = (β − β̂T )T
( t
k
Ĉk11(t) +

t

T
Ĉk12(t) +

t

k
Ĉk13(t) +

t

T
Ĉk14(t)

)
where

Ĉk11(t) =
T+k∑
j=T+1

Xj−1(− sin(tεj) + E sin(tεj)),

Ĉk12(t) = −
T∑

j=p+1

Xj−1(− sin(tεj) + E sin(tεj)),

Ĉk13(t) = −E(sin(tε1))
T+k∑
j=T+1

Xj−1,

Ĉk14(t) = E(sin(tε1))
T∑

j=p+1

Xj−1.

By (A.4) one obtains

|Ĉk1(t)|2 = OP (1)
1
T

∥∥∥∥( tk Ĉk11(t) +
t

T
Ĉk12(t) +

t

k
Ĉk13(t) +

t

T
Ĉk14(t)

)∥∥∥∥2

uniformly in k and t. {Ĉk11(t), σ(X1, . . . , XT+k), k ≥ 1} is a martingale for each t ∈ R1

with

EĈk11(t) = 0, varĈk11(t) ≤ Dk.

Consequently{∫
t2
∥∥∥Ĉk11(t)

∥∥∥2
w(t)dt, σ(X1, . . . , XT+k), k ≥ 1

}
is a nonnegative submartingale with

E
∫
t2
∥∥∥Ĉk11(t)

∥∥∥2
w(t)dt ≤ Dk.

By Chows inequality (cf. e.g. Chow and Teicher (1997), Section 7.4, Theorem 8) it holds
for a nonnegative submartingal Sk, vl ≥ vl+1 ≥ 0 and λ > 0

λP

(
max
1≤l≤n

vlSl > λ

)
≤

n∑
l=2

vlE(Sl − Sl−1) + v1ES1 =
n−1∑
l=1

(vl − vl+1)ESl + vnESn.

If vnESn → 0 as n→∞ we get

λP

(
max
1≤l≤n

vlSl > λ

)
≤
∑
l≥1

(vl − vl+1)ESl.

16



6 Proofs

From this we can conclude with vl = T−1−γlγ−1 for l = 1, . . . , T and vl = l−2 for l > T
(D > 0 is a generic constant which may change from line to line)

λP

(
max

1≤k<∞

(
k

k + T

)1+γ 1
k2

∫
t2
∥∥∥Ĉk11(t)

∥∥∥2
w(t)dt > λ

)

≤ λP
(

max
1≤k<∞

vl

∫
t2
∥∥∥Ĉk11(t)

∥∥∥2
w(t)dt > λ

)
≤ DT−1−γ

T∑
k=1

k
(
kγ−1 − (k + 1)γ−1

)
+
∑
k≥T

k
(
k−2 − (k + 1)−2

)
≤ DT−1−γ

T∑
k=1

kγ−1 +
∑
k≥T

k−2 ≤ DT−1 = o(1).

where the last line follows from the mean-value theorem.

By Lemma 6.1

max
1≤k<∞

∥∥∥∥∥∥
T+k∑
j=T+1

Xj−1

∥∥∥∥∥∥
2

1
k2

( k

T + k

)1+γ
= oP (1),

which implies

max
1≤k<∞

(
k

k + T

)1+γ 1
k2

∫
t2||Ĉk13(t)||2w(t)dt = oP (1).

Similar relations hold true also for Ĉk12(t) and Ĉk14(t). It is in fact an easier situation
since the random part does not depend on k.

Combining the above arguments we obtain

max
1≤k<∞

T

(
k

T + k

)1+γ ∫ ∥∥∥Ĉk1(t)
∥∥∥2
w(t)dt = oP (1).

Analogous argument for Ŝk(t) − Sk(t) complete the proof for the open-end procedure,
the result for the closed-end procedure is obtained analogously.

Lemma 6.3. The assertions of Theorem 2.1 hold under the same assumptions if one
replaces CFT (ε̂p+1, ε̂p+2, . . . ; γ) by CFT (εp+1, εp+2, . . . ; γ).

Proof . The proof is very close to the proof of Theorem A in Hušková and Meintanis
(2006a).

Therefore we only give a sketch here. Let

h(x, y) =
∫

cos(u(x− y))w(u) du

and

h̃(x, y) = h(x, y)− Eh(x, ε1)− Eh(ε2, y) + Eh(ε1, ε2).
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Analogous to the decomposition (18) in Hušková and Meintanis (2006a) we get∫ ∞
−∞

∣∣∣φ̃T,T+k(u)− φ̃1,T (u)
∣∣∣2w(u) du = Ak1 +Ak2 +Ak3,

where

Ak1 =
T + k

kT

(∫
w(u) du− Eh(ε1, ε2)

)
Ak2 =

1
k2

T+k∑
v1=T+1

T+k∑
v2=T+1
v2 6=v1

h̃(εv1 , εv2) +
1
T 2

T∑
v1=1

T∑
v2=1
v2 6=v1

h̃(εv1 , εv2)

− 2
Tk

T∑
v1=1

T+k∑
v2=T+1

h̃(εv1 , εv2),

Ak3 = − 2
k2

T+k∑
v=T+1

(E(h(εv, ε0) | εv)− Eh(ε1, ε2))

− 2
T 2

T∑
v=1

(E(h(εv, ε0) | εv)− Eh(ε1, ε2)) ,

where ε0, ε1, . . . i.i.d. Note that Zν = E(h(εv, ε0) | εv) − Eh(ε1, ε2) are i.i.d. with zero
mean and finite variance, hence an application of the Hájek-Rényi inequality yields e.g.
for the first term of Ak3 and the open-end procedure as T →∞ for arbitrary η > 0

P

max
k≥1

T

T + k

(
k

k + T

)γ 1
k

∣∣∣∣∣∣
T+k∑
j=T+1

Zj

∣∣∣∣∣∣ ≥ η


≤ Cη−2
( 1
T 2γ

T∑
k=1

1
k2−2γ

+
∑
k≥T

1
k2

)
→ 0 (0 < γ ≤ 1).

for some C > 0. A similar expression holds for the second term of Ak3 and in case of
the closed-end procedure. This shows that Ak3 is asymptotically negligible.

We investigate Ak2 now. Analogously to Hušková and Meintanis (2006a) there exist
orthonormal functions gj(·) and eigenvalues λj such that

h̃(x, y)
L2

ε=
∞∑
j=1

λjgj(x)gj(y),

i.e. lim
L→∞

E

h̃(ε1, ε2)−
L∑
j=1

λjgj(ε1)gj(ε2)

2

= 0,

Egj(ε1) = 0, Eg2
j (ε1) = 1, Egj(ε1)gk(ε2) = 0, j 6= k,

Eh̃2(ε1, ε2) =
∞∑
j=1

λ2
j <∞.

Let h̃L(x, y) =
∑L

s=1 λsgs(x)gs(y) and Ak2(L) defined as Ak2 with h̃ replaced by h̃L. As
in Hušková and Meintanis (2006a)

Sk :=
∑

1≤i<j≤k
(h̃(εi, εj)− h̃L(εi, εj))
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is a martingale and therefore we get by the Hájek-Rényi inequality for the open-end
procedure and the first term of Ak2 −Ak2(L) for all η > 0 and some C > 0

P

(
max
k≥1

T

T + k

(
k

k + T

)γ 1
k
|Sk| ≥ η

)
≤ 1
η2

∑
k≥1

1
k2

E
(
h̃(ε1, ε2)− h̃L(ε1, ε2)

)2
≤ C

η2

∞∑
j=L+1

λ2
j → 0 (L→∞)

and a similar expression for the closed-end procedure and the other terms. Hence for
any η1, η2 > 0 and all L ≥ L0 (for some L0) it holds

P

(
max
k≥T

ρk,T (γ)|Ak2 −Ak2(L)| ≥ η1

)
≤ η2.

It holds

Ak2(L) =
L∑
q=1

λq

(
T

k2
B2

1(q, k)− T + k

Tk
−B2(q, k)

)
,

B1(q, k) =
1√
T

T+k∑
v=T+1

gq(εv)− 1
T

T∑
j=1

gq(εj)

 ,

B2(q, k) =
1
k2

T+k∑
v=T+1

(
g2
q (εv)− 1

)
+

1
T 2

T∑
v=1

(
g2
q (εv)− 1

)
By the strong law of large numbers we get (as maxk≤log T

ρk,T

k → 0)

max
k

ρk,T (γ)B2(q, k)→ 0 a.s.

Concerning B1(q, k) we first note that it is sufficient also in case of the open-end proce-
dure to consider the supremum up to DT for some D large enough.

To this end, note that by the Hájek-Rényi inequality for any η > 0 and some C > 0

P

(
max
k≥DT

(
k

k + T

)1/2+γ/2 T 1/2

k

∣∣∣∣∣
T+k∑
v=T+1

gq(ev)

∣∣∣∣∣ ≥ η
)
≤ C

η2
T
∑
k≥DT

1
k2

+
C

Dη2
≤ 2C

η2

1
D

which becomes arbitrarily small for D large enough, hence it is sufficient to consider the
maximum up to DT even in case of the open-end procedure.

Similarly, using again the Hájek-Rényi inequality one can see that the maximum over
k ≤ δT is negligible for δ small enough (in case of the open-end procedure) (γ 6= 0):

P

max
k≤δT

√
T

k2

(
k

T + k

)1+γ
∣∣∣∣∣
T+k∑
v=T+1

gq(ev)

∣∣∣∣∣ ≥ η


≤ C

η2
T
∑
k≤δT

1
k1−γ(T + k)1+γ

≤ C

−η2
T γ

∑
k≤δT

1
k1−γ ≤

C

η2
δγ
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which becomes arbitrarily small for δ → 0. The result for the closed-end procedure is
obtained similarly. Now, we can use the functional limit theorem and get (noting that
{ 1√

T

∑T+k
v=T+1 gq(ev) : k} and 1

T

∑T
j=1 gq(ej) are independent)

max
δT≤k<DT

ρk,T (γ)
L∑
q=1

λq

(
T

k2
B2

1(q, k)− T + k

Tk

)

= max
δT≤k<DT

ρk,T (γ)
L∑
q=1

λq

(
T

k2

(
Wq,1

(
k

T

)
− k

T
Wq,2(1)

)2

− T + k

Tk

)
+ oP (1),

where Wq,1(·),Wq,2(·), q = 1, . . . , L are independent Wiener processes. For the open-end
procedure we still need to note that

T 2

k2

(
k

T + k

)1+γ

=
(

T

T + k

)2(T + k

k

)1−γ
.

Similar arguments as before yield that this has the same asymptotic distribution as the
complete maximum over 1 ≤ k <∞ for the open-end procedure respectively 1 ≤ k ≤ NT
for the closed-end procedure. In the proof of Theorem 2.1. Horváth et al. (2004) show
that (t ≈ k/T )

sup
k≥1

∣∣Wq,1

(
k
T

)
− k

TWq,2(1)
∣∣

T+k
T

(
k

T+k

)(1−γ)/2
D−→ sup

t≥0

|Wq,1(t)− tWq,2(1)|

(1 + t)
(

t
1+t

)(1−γ)/2 .

After an index transformation l = t/(1 + t) they further obtain

max
t≥0

|Wq,1(t)− tWq,2(1)|

(1 + t)
(

t
1+t

)(1−γ)/2
D= sup

0≤l≤1

|Wq(l)|
l(1−γ)/2

,

where Wq(·) are independent Wiener processes.

Similar arguments as above yield that it is asymptotically equivalent to consider the
complete sum over q ≥ 1.

Taking the negligibility of Ak3 into account analogous arguments as above give the limit
behavior as given in Theorem 2.1 for the joint supremum supk≥1 |Ak1 +Ak2 +Ak3|, thus
completing the proof.

Proof of Theorem 2.1 . It follows immediately from Lemmas 6.2 and 6.3.

Proof of Theorem 2.2 . By Lemma 6.2 it is sufficient to consider the statistic CFT ,
where ε̂t are replaced by εt. By Lemma 6.1 (g = cos, sin) it follows

max
1≤k<∞

(
k

T + k

)1+γ ∫ ∣∣∣∣∣∣1k
T+k∑
j=T+1

(exp(itεj)− E(exp(itεj)))

∣∣∣∣∣∣
2

w(t) dt = oP (1)

max
1≤k<∞

(
k

T + k

)1+γ ∫ ∣∣∣∣∣∣ 1
T

T∑
j=1

(exp(itεj)− E(exp(itεj)))

∣∣∣∣∣∣
2

w(t) dt = oP (1).

From this we can conclude immediately that CFT = OP (1/T ) as well as the limit
distribution of CFT /T in case of k0 = bt0T c.

The following lemma is needed to prove Theorem 2.3.
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Lemma 6.4. Under the assumptions of Theorem 2.3 it holds for the open-end

(CFT (ε̂p+1, ε̂p+2, . . .)− CFT (εp+1, εp+2, . . .))/T

P−→ sup
t0<t<∞

( t

t+ 1

)1+γ( t− t0
t

)2
∫
|ϕ0(u)(ϕX(u)− 1)|2w(u)du. (6.4)

For the closed-end procedure an analogous assertion holds where the supremum is taken
over t0 < t < N .

Proof. We follow the lines of the proof of Lemma 6.3. We study the differences

Ĉk(t)− CAk (t), Ŝk(t)− SAk (t),

where Ĉk(t), Ŝk(t) are as in the proof of Lemma 6.3 and

CAk (t) =
1
k

T+k∑
j=T+1

cos(t(εj + δTXj−1I{j > T + k0}))−
1
T

T∑
j=1+p

cos(tεj),

SAk (t) =
1
k

T+k∑
j=T+1

sin(t(εj + δTXj−1I{j > T + k0}))−
1
T

T∑
j=1+p

sin(tεj).

By a Taylor expansion

cos(tε̂j)− cos(t(εj + δTXj−1I{j > T + k0}))
= −t(ε̂j − εj − δTXj−1I{j > T + k0}) sin(t(εj + δTXj−1I{j > T + k0})) +RAjC(t)

where RAjC(t) is a remainder term. Then Ĉk(t) can be decomposed as follows

Ĉk(t) = CAk (t) + ĈAk1(t) + ĈAk2(t)

with

ĈAk1(t) = −
(1
k

T+k∑
j=T+1

t(ε̂j − (εj + δTXj−1I{j > T + k0})) sin(t(εj + δTXj−1I{j > T + k0}))

− 1
T

T∑
j=1+p

t(ε̂j − εj) sin(tεj)
)
,

ĈAk2(t) =
1
k

T+k∑
j=T+1

RAjC(t)− 1
T

T∑
j=1+p

RjC(t),

RjC(t) as in the proof of Lemma 6.3. Similarly as in the proof of Lemma 6.3 we get

max
1≤k<∞

( k

T + k

)1+γ
∫
|ĈAk2(t)|2w(t) dt = OP (1)

1
T 2

∫
t4w(t) dt = oP (1).

Concerning ĈAk1(t) we use the decomposition

ĈAk1(t) = (β − β̂T )T
( t
k
Ĉ
A

k11(t) +
t

T
Ĉk12(t) +

t

k
Ĉ
A

k13(t) +
t

T
Ĉk14(t)

)
,
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where Ĉk12(t), Ĉk14(t) are as in the proof of Lemma 6.3 and

Ĉ
A

k11(t) =
T+k∑
j=T+1

Xj−1(− sin(t(εj + δTXj−1I{j > T + k0}))

+ E(sin(t(εj + δTXj−1I{j > T + k0}))|Xj−1)),

Ĉ
A

k13(t) = −
T+k∑
j=T+1

Xj−1E(sin(t(εj + δTXj−1I{j > T + k0}))|Xj−1)),

Negligiblity of Ĉk12(t), Ĉk14(t) follows from the proof of Lemma 6.3 and of Ĉ
A

k11(t)

analogously. The term Ĉ
A

k13(t) has to be treated more carefully. Notice that by Jenssens
inequality

max
1≤k<∞

(
k

k + T

)1+γ 1
k2

∫
t2
∥∥∥ĈA

k13(t)
∥∥∥2
w(t)dt

≤
∫
t2w(t) dt max

1≤k<∞

1
k2

 T+k∑
j=T+1

‖Xj−1‖

2

≤
∫
t2w(t) dt max

1≤k<∞

1
k

T+k∑
j=T+1

‖Xj−1‖2

≤
∫
t2w(t) dt

p∑
l=1

max
1≤k<∞

1
k

T+k∑
j=T+1

X2
j−l = OP (1),

where the last line follows from Lemma 6.1 and the fact that EX2
j−l ≤ C for some C > 0.

Combining the above arguments we have

max
1≤k<∞

(
k

T + k

)1+γ ∫ ∥∥∥Ĉk(t)− CAk (t)
∥∥∥2
w(t)dt = OP (T−1) = oP (1).

Analogous arguments holds for Ŝk(t)− SAk (t) as well as the closed-end procedure.

Noticing that

E(CAk (t) + iSAk (t)) = ϕ0(t)(ϕX(t)− 1)
(k − k0)+

k

it remains to show

max
1≤k<∞

( k

T + k

)1+γ
∫
|CAk (t)− ECAk (t)|2w(t)dt = oP (1).

Since
εj + δTXj−11{j > T + k0} = Xj − βTXj−1 = γTXp+1,j−1

for γ = (1,−β1, . . . ,−βp)T it follows from Lemma 6.1 (g = cos, sin)

max
1≤k<∞

( k

T + k

)1+γ
∫ ∣∣∣∣∣∣1k

T+k∑
j=T+k0+1

(
exp{itγTXp+1,j} − E(exp{itγTXp+1,j})

)∣∣∣∣∣∣
2

w(t)dt

= oP (1).
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Proof. of Theorem 2.3 To prove our theorem it suffices to show that, T →∞,

CFT (εp+1, εp+2, . . .)/T = oP (1) (6.5)

in addition to (6.4). The latter follows immediately from Lemma 6.4, while assertion
(6.5) follows from Lemma 6.3.

Proof of Theorem 3.1 . The proof follows along the line of the proof of Theorem 2.1
but certain parts are more delicate since we work now with a triangular array.

Denote by E∗, var∗, P ∗ etc. expectation, variance and probability w.r.t. ε∗(p), ε∗(p +
1), . . . given X1, X2, . . . ,, i.e. for example E∗(·) = E(·|X1, X2, . . .).

We have to study conditional limit behavior of

CF ∗T = CFT (ε∗(p+ 1), ε∗(p+ 2), . . .)

= max
1≤k≤TN

T
( k

T + k

)1+γ
∫ ∞
−∞

∣∣ϕ∗T,T+k(u)− ϕ∗p,T (u)
∣∣2w(u) du,

where

ϕ∗T,T+k(u) =
1
k

T+k∑
j=T+1

exp{iuε∗(j)}, u ∈ R1, k ≥ 1

and an analogous expression for ϕ∗p,T . First, we show that we can replace ϕ∗ by

ϕ̃∗T,T+k(u) =
1
k

T+k∑
j=T+1

exp{iuεUT (j)}

and an analogous expression for ϕ̃∗p,T (u), C̃F
∗
T = CFT (εUT (p+1), εUT (p+2), . . .). Precisely,

we will show that for any η1, η2 > 0 it holds for T large enough

P ∗
(∣∣∣CF ∗T − C̃F ∗T ∣∣∣ ≥ η1

)
≤ η2 + oP (1).

The proof is essentially analogous to the proof of Lemma 6.2 and will only be sketched.
The decompositions remain true but Xj has to be replaced by XUT (j) and εUT (j). In the
notation we indicate this by ∗, e.g. Ĉ∗k1(t).

By an application of the Hájek-Rényi inequality it holds for any D > 0

P ∗

max
k

∥∥∥∥∥∥1
k

T+k∑
j=T+1

XUT (j−1)X
T
UT (j−1) − E∗XUT (1)X

T
UT (1)

∥∥∥∥∥∥ ≥ D


≤ 1
D2

var∗
∥∥∥XUT (p+1)X

T
UT (p+1)

∥∥∥∑
k≥1

1
k2

≤ 1
D2

C
1

T − p

T∑
j=p+1

∥∥XjXT
j

∥∥2 ≤ 1
D2

(C + oP (1)),
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where C > 0 is now and in the following a generic constant which can change von line
to line. This leads similarly by the analogue of (6.3) to

P ∗

(
max

1≤k<∞
T

(
k

T + k

)1+γ ∫ ∣∣∣Ĉ∗k2(t)
∣∣∣2w(t) dt ≥ η

)
≤ ε+ oP (1) (6.6)

for any η, ε > 0. The decomposition of Ĉ∗k1(t) is slightly different than in the proof of
Lemma 6.2. Let

Ĉ∗k1(t) = (β − β̂T )T
(
t

k
Ĉ
∗
k11(t) +

t

T
Ĉ∗k12(t)

)
where

Ĉ
∗
k11(t) = −

T+k∑
j=T+1

(
XUT (j)−1 sin(tεUT (j))− E∗

(
XUT (j)−1 sin(tεUT (j))

))
,

Ĉ
∗
k12(t) =

T∑
j=p+1

(
XUT (j)−1 sin(tεUT (j))− E∗

(
XUT (j)−1 sin(tεUT (j))

))
.

The assertion follows analogously to the assertion for Ĉk1(t) in the proof of Lemma 6.2
proving (6.6).

The remainder of the proof is close to the proof of Lemma 6.3, so we only scetch the
differences. Equation (6.6) shows that it is sufficient to study∫ ∞

−∞

∣∣ϕ̃∗T,T+k(u)− ϕ̃∗p,T (u)
∣∣2w(u) du = Ak1 +A∗k2 +A∗k3 +A∗k4

where Ak1 is as in the proof of Lemma 6.3 and

A∗k2 =
1
k2

T+k∑
v1=T+1

T+k∑
v2=T+1
v2 6=v1

h̃(εUT (v1), εUT (v2)) +
1
T 2

T∑
v1=1

T∑
v2=1
v2 6=v1

h̃(εUT (v1), εUT (v2)),

− 2
kT

T∑
v1=1

T+k∑
v2=1+T

h̃(εUT (v1), εUT (v2))

A∗k3 = − 2
k2

T+k∑
v=T+1

(
E(h(εUT (v), ε0)|εUT (v))− E∗E

(
h(εUT (v), ε0)|εUT (v)

))
− 2
T 2

T∑
v=p+1

(
E
(
h(εUT (v), ε0)|εUT (v)

)
− E∗E

(
h(εUT (v), ε0)|εUT (v)

))
A∗k4 = −2

k + T

kT

(
E∗E

(
h(εUT (p+1), ε0)|εUT (p+1)

)
− Eh(ε1, ε2)

)
.

As for Ak3 in the proof of Lemma 6.3 we obtain by an application of the Hájek-Rényi
inequality for any η > 0

P ∗

(
max
k≥1

T

(
k

T + k

)1+γ

|A∗k3| ≥ η

)
= oP (1).
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Furthermore it holds

max
k≥1

T

(
k

T + k

)1+γ

|A∗k4| ≤
1

T − p

∣∣∣∣∣∣
T∑

j=p+1

(E(h(εj , ε0)|εj)− Eh(ε1, ε2))

∣∣∣∣∣∣ = oP (1).

Define

S∗k :=
∑

1≤i<j≤k
(h̃(εUT (i), εUT (j))− h̃L(εUT (i), εUT (j))).

As T →∞ an application of the Markov inequality yields

E∗S∗k =
k(k − 1)

2
1
T 2

T∑
v1=1

T∑
v2=1

(
h̃(εv1 , εv2)− h̃L(εv1 , εv2)

)
= OP (1)

k2

T

√∑
j≥L

λ2
j

for some C by Lemma A in Serfling (1980), p. 183, which shows that

sup
k≥1

T

T + k

(
k

k + T

)γ 1
k
|E∗S∗k |

becomes sufficiently small for L large enough. S∗k − E∗S∗k can be expressed as a linear
combinations of martingales (cf. Serfling (1980), p. 178-179), therefore the Hájek-Rényi
inequality yields, as T →∞,

P ∗
(

max
k≥1

T

T + k

(
k

k + T

)γ 1
k
|S∗k − E∗S∗k | ≥ A

)
≤ C

A2

∑
k≥1

1
k2

1
T 2

T∑
j=1

T∑
v=1

(
h̃(εj , εv)− h̃L(εj , εv)

)2
=

C

A2

∞∑
j=L+1

λ2
j + oP (1)

for each L, for the open-end procedure and the first term of Ak2(h̃) − Ak2(h̃L) for all
A > 0 and some C > 0. The right hand side becomes arbitrarily small for L large
enough. Hence for any A1, A2 > 0 and all L ≥ L0 (for some L0) T large, it holds

P

(
max
k≥T

ρk,T (γ)|A∗k2 −A∗k2(L)| ≥ A1

)
≤ A2,

where

A∗k2(L) =
L∑
q=1

λq

(
T

k2
B∗21 (q, k)− T + k

Tk
−B∗2(q, k)

)
,

B∗1(q, k) =
1√
T

T+k∑
v=T+1

gq(εUT (v))−
1
T

T∑
j=1

gq(εUT (j)))

 ,

B∗2(q, k) =
1
k2

T+k∑
v=T+1

(
g2
q (εUT (v))− 1

)
+

1
T 2

T∑
v=1

(
g2
q (εUT (j))− 1

)
.
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We start with the term B∗2(q, k). First note that for r > 1

E∗|g2
q (εUT (1) − 1|2 = T r−1 1

T r

T∑
v=1

(
g2
q (εv)− 1

)2 = oP (T r−1) (6.7)

by Theorem 5.2.3 (i)(α) in Chow and Teicher (1997) since∑
j≥1

P
((
g2
q (εv)− 1

)r ≥ jr) =
∑
j≥1

P
(∣∣g2

q (εv)− 1
∣∣ ≥ j) = E

∣∣g2
q (εv)− 1

∣∣ <∞.
According to Shorack and Wellner (1986), inequality 4 (p. 858) in addition to the von
Bahr Esseen inequality (Shorack and Wellner, 1986, p. 858) it holds for i.i.d. random
variables with mean 0 for 1 < r ≤ 2

E max
1≤k≤T

(|Sk|r) ≤ cT E|X1|r

for some c > 0, Theorem 1.1 in Fazekas and Klesov (2000) then gives for b1 ≥ . . . ≥
bT > 0

E
(

max
1≤k≤T

bk|Sk|
)r
≤ c E|X1|r

T∑
k=1

brk

for some c > 0. We have to distinguish the cases k ≤ T and k ≥ T . By the above
inequality for 1 < r < min(2, 1/(1− γ)), i.e. 0 ≤ r(1− γ) < 1, and (6.7) it holds

E∗
(

max
k≤T

T

T + k

( 1
T + k

)γ 1
k1−γ

∣∣∣∣∣
T+k∑
v=T+1

(g2
q (εUT (v))− 1)

∣∣∣∣∣
)

≤ T−rγ
T∑
k=1

1
kr(1−γ)

E∗|g2
q (εUT (1) − 1|2 = oP (1).

Similarly for r = 2

E∗
(

max
k>T

T

(
k

T + k

)1+γ 1
k2
|
T+k∑
v=T+1

(g2
q (εUT (v))− 1)|

)

≤ T 2
∑
k>T

1
k4

E∗|g2
q (εUT (1))− 1|2 = oP (1).

An application of the Markov inequality yields the negligibility of B∗2(q, k).

It remains to show that the process {(B∗1(1, bTsc), . . . , B∗1(L, bTsc)); s ∈ [0, A]} con-
verges weakly (conditionally) to a Wiener process for all A > 0. The convergence of
the finite-dimensional distributions follows e.g. from Singh (1981), Theorem 1, while
tightness follows by Theorem 15.6 in Billingsley (1968) and the finiteness of the second
moments. We can then conclude as in the proof of Lemma 6.3.
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of portfolio betas. Submitted, 2010.

Jushan Bai. On the partial sums of residuals in autoregressive and moving average
models. J. Time Ser. Anal., 14(3):247–260, 1993. ISSN 0143-9782.

Jushan Bai. Weak convergence of the sequential empirical processes of residuals in
ARMA models. Ann. Statist., 22(4):2051–2061, 1994. ISSN 0090-5364.

Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, New York,
1968.

Yuan Shih Chow and Henry Teicher. Probability theory: independence, interchange-
ability, martingales. Springer Texts in Statistics. Springer-Verlag, New York, third
edition, 1997. ISBN 0-387-98228-0.
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