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Abstract

A large class of sequential change point tests are based on estimating functions
where estimation is computationally efficient as (possibly numeric) optimization
is restricted to an initial estimation. This includes examples as diverse as mean
changes, linear or non-linear autoregressive and binary models. While the stan-
dard cumulative-sum-detector (CUSUM) has recently been considered in this
general setup, we consider several modifications that have faster detection rates
in particular if changes do occur late in the monitoring period. More presicely,
we use three different types of detector statistics based on partial sums of a mon-
itoring function, namely the modified moving-sum-statistic (mMOSUM), Page’s
cumulative-sum-statistic (Page-CUSUM) and the standard moving-sum-statistic
(MOSUM). The statistics only differ in the number of observations included in
the partial sum. The mMOSUM uses a bandwidth parameter which multiplica-
tively scales the lower bound of the moving sum. The MOSUM uses a constant
bandwidth parameter, while Page-CUSUM chooses the maximum over all pos-
sible lower bounds for the partial sums. So far, the first two schemes have only
been studied in a linear model, the MOSUM only for a mean change.
We develop the asymptotics under the null hypothesis and alternatives under
mild regularity conditions for each test statistic, which include the existing the-
ory but also many new examples. In a simulation study we compare all four
types of test procedures in terms of their size, power and run length. Addition-
ally we illustrate their behavior by applications to exchange rate data as well as
the Boston homicide data.
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1 Introduction

1 Introduction

Despite a relatively long tradition in statistics, change point analysis is a very active
field and has become increasingly popular in the last years due to its importance
in many areas where data is collected over time. In addition to a-posteriori change
point methods, there has been a recent interest in sequential methodology due to the
fact that an increasing number of data sets are collected automatically or without
significant costs such that the observations arrive steadily. Examples include financial
data sets, e.g., in risk management (Andreou and Ghysels (2006)) or CAPM models
(Aue et al. (2011)) as well as medical data sets, e.g., monitoring intensive care patients
(Fried and Imhoff (2004)).

Chu et al. (1996) introduced a new way of sequential testing, which allows to control
the asymptotic α-error if no changes occur while having asymptotic power one under
alternatives, which has then be pursued by others e.g. Horváth et al. (2004), Aue et al.
(2006), Horváth et al. (2008), Aue et al. (2008), Aue and Horváth (2004), Fremdt
(2014) and Hušková and Koubková (2005) (see Section 1.2 below for more details).
The key assumption is the existence of a historic data set which is used for initial
estimation before monitoring starts. This is usually given in applications as some data
collection must have taken place before one can safely build or monitor a model. This
approach allows for nonparametric inference by means of asymptotics by letting the
length of the historic data set grow to infinity even if a possibly infinite observation
horizon is used. Nonparametric inference is meant in the sense that e.g. the stochastic
structure of the innovation process in a regression model is not completely specified.

As recently pointed out by Kirch and Kamgaing (2015) most of these statistics can
be written by means of estimating and monitoring functions, which then provide a
unifying framework for the derivation of the asymptotic results. Kirch and Kamgaing
(2015) derive regularity conditions under which they prove limit results for the stan-
dard CUSUM monitoring scheme as originally proposed by Chu et al. (1996), that has
been used in most follow-up works for different change point scenarios, e.g. Horváth
et al. (2004), Aue et al. (2006), Aue and Horváth (2004) and Hušková and Koubková
(2005).

The main disadvantage of the standard sequential CUSUM statistic is the fact that
the detection time can be rather long if changes occur late in the monitoring period.
This is due to the fact that effectively a (properly scaled) two-sample test is applied
comparing the historic data set with the data set after monitoring starts up to the
most recent observation. Thus for a late change many ’null observations’ contaminate
the second data set so that more ’alternative’ observations need to be collected before
significance is reached. This is why, recently, alternative monitoring schemes based
only on more recent observations have been proposed in the literature: The mMOSUM
in a linear model setup in Chen and Tian (2010) (where their null limit distribution
is not correct), the Page-CUSUM in a linear model setup in Fremdt (2014) and the
standard MOSUM for the location model in Horváth et al. (2008) and Aue et al.
(2008).

In this paper, we generalize the latter monitoring schemes to the general framework of
estimating functions thus greatly extending their range of applications to examples as
diverse as the non-linear autoregressive or the binary time series model. Furthermore,
we investigate the differences in terms of size, power and run length in a simulation
study and illustrate the behavior on two data sets.

The paper is organized as follows: First, the general setup and the new statistics
are introduced, namely the mMOSUM, the Page-CUSUM and the MOSUM statis-
tic. Examples for change point problems that fall into that framework are given in
Section 1.2. In Section 2 we develop the limit distributions for these statistics in the
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1 Introduction

general setting under the null hypothesis and mild assumptions. We first focus on the
mMOSUM and the Page-CUSUM statistic before developping the asymptotics for the
MOSUM statistic under slightly different assumptions. In Subsection 2.2 we show that
the different procedures have asymptotic power one under very general conditions. Fi-
nally, in Section 3 we compare the different types of statistics, including the CUSUM
statistic in an extensive simulation study by means of their empirical size, power and
run lengths in different scenarios before giving two data examples.

1.1 Monitoring schemes based on estimating functions

As already mentioned we assume the existence of a historic training data setX1, . . . , Xm

with no change points. Based on this initial observations we estimate the unknown
parameter θ0 ⊂ Rd by means of an estimating function:

m∑
t=1

G(Xt, θ̂m)
!
= 0, (1.1)

where Xt, t = 1, ...,m, are the historical data and the estimating function G takes
values in Rd. The simplest example is the estimating function G(x, θ) = (x − θ)
in a location model which leads to the mean (as estimator for the expectation), i.e.

θ̂m = X̄m. In a linear model with Yt = θZt + et, we consider Xt = (Yt, Zt) as well as
G((y, z), θ) = z(y− θz), which yields the usual least squares estimator in this context.
Similarly, in an autoregressive linear model Zt is given by the lagged observations
(Yt−1, . . . , Yt−p). The examples show that the data Xt can be naturally or artificially
multivariate.

Estimating functions are effectively generalized method of moments (also related to M-
estimators, which are a particular class of estimating functions), where it is exploited
that the true parameter θ0 is the only one fulfilling EG(X1, θ0) = 0. In our setting,
we do not require that the model is actually true but can use the model as a tool for
feature extraction. In this case θ0 is the best approximating parameter (in the above
sense). This enables us to construct a change point method which will detect changes
that cause a change in the best approximating parameter (see e.g. Kirch et al. (2015)
as well as Kirch and Kamgaing (2012) where this idea was exploited for offline tests).

Because EG(X(1), θ0) 6= 0 for the observations X(1) after the change, we consider

monitoring schemes based on means of G(Xi, θ̂m), i > m. However, it is somewhat
restrictive to require that the same estimating function G needs to be used, hence we
allow for a different function H, which does not necessarily need to be an estimating
function itself but can for example be lower-dimensional in order to increase power for
certain alternatives. Furthermore, this allows to use a more precise but less robust
function for estimating (e.g. if it is known that the historic data set does not contain
any outliers) while using a more robust monitoring function (as there may be outliers
during the observation period). See Kirch and Kamgaing (2015) for more details as
well as examples for this idea.

All detector statistics are based on partial sum processes

Sm(l, u) :=

m+u∑
t=m+l+1

H(Xt, θ̂m).

Because the monitoring functionH and hence the partial sum processes are often multi-
variate the test decision will be based on quadratic forms ‖S‖2A = STAS with a suitable
matrix A usually chosen such that the null limit is pivotal, e.g. A−1 = cov(H(X1, θ0)),
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resulting in the following statistics

Γ1(m, k) := ‖Sm(0, k)‖A CUSUM,

Γ2(m, k) := Γ2(m, k, h2) := ‖Sm(bkh2c, k)‖A, mMOSUM,

Γ3(m, k) := sup
06i<k

‖Sm(i, k)‖A Page-CUSUM,

Γ4(m, k) := Γ4(m, k, h4) = ‖Sm(k − h4, k)‖A, MOSUM (1.2)

where Γj = Γj,A for j = 1, . . . , 4 and the dependence on A is suppressed where
possible for better readability. The bandwidth h2 ∈ (0, 1) (fixed) is a tuning parameter
determining the rate with which early observations are discarded, h4 = h4,m ∈ N is
the window size in the moving sum (MOSUM) procedure.

Statistic Γ1 has already been dealt with in detail in Kirch and Kamgaing (2015) and
will not be considered here except in the simulation study and data analysis.

In order to control the asymptotic size of the detection procedure even in the presence
of an infinite observation horizon, weight functions wj(k) are introduced that depend
on the point of time and either the length of historic data set m (i.e. wj(k) = wj(m, k),
j = 1, 2, 3, for the CUSUM, mMOSUM and Page-CUSUM or the window width h4 for
the MOSUM method (i.e. w4(k) = w4(h4, k)). As before we supress the dependence
on m and h in order to obtain a unified notation.

The null hypothesis of no change will be rejected at the first point in time k when

wj(k)Γj(m, k) > cj , j = 1, 2, 3, 4,

where cj is a critical value which will be derived from the limit distribution under the
null hypothesis. An alternative way of thinking about this is that cj/wj(k) is a critical
curve that needs to be crossed by the detector statistics Γj(m, k). In Section 3.2 we will
plot wj(k)Γj(m, k)/cj for an easier visual comparison, so that all detector statistics
need to cross the horizontal 1-line.

The stopping times of the corresponding sequential procedures are defined as

τj,m = min{1 6 k < N(m) : wj(k)Γj(m, k) > cj},

where we set min ∅ = ∞. We distinguish between the open-end procedure with
N(m) =∞ and the closed-end procedure with N(m) = mN + 1, N > 0.

If the weight function and critical value are chosen appropriately, the type-I-error is
controlled and the method has asymptotic power one under alternatives, i.e.

lim
m→∞

PH0(τm <∞) = α, lim
m→∞

PH1(τm <∞) = 1.

1.2 Examples

The mMOSUM has, to the best of our knowledge, only been considered in the linear
model in Chen and Tian (2010), where – due to an error in the proof – the asymptotic
limit distribution under the null hypothesis is incorrect. The Page-CUSUM has been
considered in Fremdt (2014) also for the linear model. The MOSUM statistic has been
analysed in the location model in Horváth et al. (2008) and Aue et al. (2008).

Kirch and Kamgaing (2015) develop the theory for the CUSUM statistic in an equiva-
lent setting to the one investigated in this paper. To unify the theory for all statistics we
use the same assumptions in this paper to prove the corresponding limit results under
the null hypothesis with the exception of the MOSUM statistic with h4/m→ 0, which

4



1 Introduction

needs somewhat different assumptions. Therefore, the validity of the procedures based
on the mMOSUM, Page-CUSUM as well as MOSUM (with h/m→ β > 0) monitoring
schemes follows for all examples considered in Kirch and Kamgaing (2015). Similarly,
under alternatives we give a stricter assumption than necessary in order to unify the
theory for all statistics, which can be relaxed (see Weber (2017), Chapter 4). We will
now give a short overview over these examples, more details can be found in Kirch
and Kamgaing (2015).

1.2.1 Linear regression model

The model is given by

Xt = xTt βt + εt, 0 6 t <∞,

where βt = (βt,1, . . . , βt,p)
T are the unknown parameters and xt = (1, xt,2, . . . , xt,p)

T

are regressors. Moreover, the errors {εt} have mean zero and variance σ2
t = σ2

0 and
are independent of {xt}. In the literature the residuals are often supposed to be i.i.d.
or uncorrelated with some moment conditions, but the minimal requirement is that
they fulfill a functional central limit theorem.

As before, we consider the null hypothesis of no change (H0 : βt = β0 for all t) against
the alternative hypothesis of a change at m + k∗ (HA : βt = β0 for t 6 m + k∗ but
βt = βA 6= β0 for t > m+k∗). Here, k∗ is the change point, and m denotes the length
of the historical data set.

Both Chen and Tian (2010) for the mMOSUM as well as Fremdt (2014) for the Page-
CUSUM use the least squares estimator to obtain an approximation for the unknown
parameter β0 based on the historical data set. The corresponding estimating function
is given by G((Xt,x

T
t )T ,β) = xt(Xt−βTxt). Their monitoring function for parameter

changes is given by H((Xt,x
T
t )T ,β) = Xt−βTxt with B(θ0) = (1, 0, . . . , 0)T , i.e. their

detector is based on the estimated residuals. However, this monitoring function cannot
detect all alternatives so that Hušková and Koubková (2005) propose the CUSUM
statistic with H = G resulting in a test with asymptotic power one for all alternatives.

In order to find changes in the error variance σ2
t , we can extend the estimating

function to G̃((Xt,x
T
t )T , (β, σ2)) = (G((Xt,x

T
t )T ,β)T , (Xt − βTxt)2 − σ2)T and

H̃((Xt,x
T
t )T , (βT , σ2)T ) = (Xt − βTxt)2 − σ2 with B(θ0) = (0, . . . , 0, 1)T . The cor-

responding procedures have also been considered by Chen and Tian (2010) as well as
Fremdt (2014) respectively.

1.2.2 Location model

This is the simplest change point setting, where

Xt = µ+ ∆1{t>m+k∗} + εt, 0 6 t <∞,

where k∗ is the change point, µ ∈ R is the mean prior the change, ∆ 6= 0, and εt is an
error sequence with mean zero and variance σ2. The multivariate mean change model
is also included in the general setup but for simplicity we concentrate on the univariate
model.

In fact, this model is a special case of the previous regression model with p = 1.
Estimating and monitoring function simplify to G(Xt, µ) = Xt−µ resulting in µ̂ = X̄m

and H = G. Horváth et al. (2008) and Aue et al. (2008) investigate this procedure for
the MOSUM detector.
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It is also possible to use more robust monitoring procedures e.g. based on M -estimators
in this context and one can even combine a non-robust initial estimator with a robust
monitoring function by choosing the monitoring function appropriately and different
from the estimating function. For more details, we refer to Kirch and Kamgaing (2015),
Section 6.2.

1.2.3 Non-linear models

Several monitoring procedures based on the CUSUM detectors that fit into the above
framework have already been investigated in the literature including one for GARCH-
sequences (Berkes et al., 2004), for nonlinear regression models with Yt = f(xt,β0)+εt
(Ciupera, 2013) as well as nonlinear autoregressive time seriesXt = g(Xt−1, . . . , Xt−p)+
εt for some function g where a neural network approximation is used to construct the
detectors (Kirch and Kamgaing, 2015). More details can be found in Kirch and Kam-
gaing (2015), Section 6.3.

1.2.4 Integer-valued time series

A binary autoregressive time series is given by

Xt|Xt−1, Xt−2, . . . , Zt−1, Zt−2, · · · ∼ Bern(πt(β)), g(πt(β)) = βTZt−1,

where Zt−1 = (Zt−1, . . . , Zt−p) are regressors which can be purely autoregressive,
purely exogenous or a combination of both. In this case a typical estimating function
is based on the partial likelihood scores with a monitoring function either being of
the same form or a projection onto one or more of the components of the full partial
likelihood scores.

Similarly, the Poisson autoregressive model is defined by

Xt|Xt−1, . . . , Xt−p ∼ Pois(λt), λt = fθ(Xt−1),Xt−1 = (Xt−1, . . . , Xt−p)
T ,

where the estimating function (as well as monitoring function) is also typically obtained
by the partial log likelihood scores. For more details we refer to Kirch and Kamgaing
(2015), Sections 6.4 and 6.5.

2 Asymptotics

We first derive the null asymptotics for the respective statistics, allowing us to control
the type-I-error of the procedures, before showing that the procedures are asymptoti-
cally consistent under alternatives.

2.1 Asymptotics under the null hypothesis

In this section, we give regularity conditions under which we can prove the limit
distribution for the above statistics. For the CUSUM statistic this was already done
in Kirch and Kamgaing (2015). It turns out that we can derive the null asymptotics
for the mMOSUM, the Page-CUSUM as well as the MOSUM with h4/m → β > 0
under the same set of regularity conditions. In particular, the limit results carry over
to all the examples given in Kirch and Kamgaing (2015) as shortly introduced in the
previous section. Unlike Chen and Tian (2010) we do not use a weight function for the
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2 Asymptotics

mMOSUM that depends on the bandwidth, although such results can also be obtained
with the below methods. Their choice of weight function seems to result in a very nice
limit distribution in their paper, which is however only due to an error in the proof.
The corrected limit does no longer benefit from that choice so that we decided to
return to the usual shape of the weight function – after all the bandwidth in this case
is merely a way of using only more recent observations for later comparisons.

For the MOSUM statistic with h4/m → 0 we get related but somewhat different
regularity conditions. Exemplary, we prove their validity for a linear regression model
thus extending the existing results from the location to a linear regression model (see
Section 2.2).

The regularity conditions RC.1, RC.2 and RC.3 are the same that have been used in
Kirch and Kamgaing (2015) for the CUSUM monitoring scheme:

Regularity Condition RC.1.

(a) The partial sum process{
1√
m

∑bmsc
t=1 (H(Xt, θ0), B(θ0)G(Xt, θ0)) : 1 6 s 6 T

}
fulfills a functional cen-

tral limit theorem for any T > 0: 1√
m

bmsc∑
t=1

(H(Xt, θ0), B(θ0)G(Xt, θ0)) : 1 6 s 6 T


D−→ {(W1(s),W2(s)) : 1 6 s 6 T} ,

where (W1(s),W2(s)) has the covariance matrix Σ =

(
Σ1 C
CT Σ2

)
with B(θ0) as

in RC.2 below.

(b) The following Hájek -Rényi-type inequality is fulfilled for all 0 6 α < 1
2 uniformly

in m

max
16k6m

1

m
1
2−αkα

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥ = OP (1).

(c) For the open-end procedure the following Hájék-Rényi-type inequality is fulfilled
for any km > 0 uniformly in m

max
k>km

√
km
k

∥∥∥∥∥
m+k∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥ = OP (1).

This set of regularity conditions ensures that the limit distribution is an appropriate
functional of a Wiener process, where (b) is needed to control the behavior at the very
beginning of the monitoring period, while (c) is needed to control the behavior at the
infinite end of the monitoring period.

Because of the different structures for the CUSUM, mMOSUM and Page-CUSUM on
the one hand, and MOSUM on the other hand, slightly different regularity conditions
are needed for the latter case (if h4/m → 0). Thus, we first discuss the situation of
the first three (where the results for the CUSUM can already be found in Kirch and
Kamgaing (2015) and will not be repeated), before giving related but slightly different
assumptions for the MOSUM statistic.
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2 Asymptotics

2.1.1 Modified MOSUM and Page-CUSUM

Regularity Condition RC.2.

a) The weight function has the following form

w(m, k) = m−
1
2 w̃(m, k)

with

w̃(m, k) =

{
ρ
(
k
m

)
, k > am

0, k < am

and am
m

m→∞−→ 0. In addition we need that ρ is positive, continuous and

lim
t→0

tγρ(t) <∞ for some 0 6 γ <
1

2
.

b) For the open-end procedure we additionally need

lim sup
t→∞

tρ(t) <∞.

This set of regularity conditions is concerned with the regularity of the weight function,
which ensures that we can control the type-I-error even in the open-end case. The
case distinction in (a) is quite useful to allow for false alarms within the very first
observations after the monitoring starts (compare with Figure 3.2). A standard weight
function often used in the literature fulfilling these assumptions is given by

w(m, k) = m−1/2
(

1 +
k

m

)−1(
k

m+ k

)−γ
, 0 6 γ <

1

2
. (2.1)

Regularity Condition RC.3. The following approximation holds under H0, where
N(m) is the observation horizon and can be infinite:

sup
16k<N(m)

min

(
1

m
1
2−γkγ

,
m1/2

k

)∥∥∥∥∥
m+k∑
i=m+1

H(Xi, θ̂m)

−

 m+k∑
t=m+1

H(Xt, θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1)

for some θ0 and a suitable B(θ0), where γ is as in RC.2.

This assumption allows to replace the partial sum process including the estimated
parameter value with the appropriate partial sum process with the true or best ap-
proximating parameter θ0. The second summand may be surprising at first but this
accounts for the uncertainty from using the estimator rather than the true value. If
G = H, then B(θ0) = Id.

Under these assumptions we can derive the following null asymptotics for the mMO-
SUM Γ2 and the Page-CUSUM Γ3:

Theorem 2.1. Let Regularity Conditions RC.1a), RC.2a) as well as RC.3 be fulfilled.
Then, we get the following limit distributions (for m→∞ and fixed bandwidth h2 > 0)
under the null hypothesis for any summetric positive semi-definite matrix A with the
notation as in (1.2).
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2 Asymptotics

(a) Closed-end procedure
For a bounded weight function ρ or if additionally RC.1(b) holds, we get:

(i) sup
16k6Nm

w(m, k)Γ2(m, k, h2)

D−→ sup
0<t6N

ρ(t) ‖W1(1 + t)−W1(1 + th2)− t(1− h2)W2(1)‖A ,

(ii) sup
16k6Nm

w(m, k)Γ3(m, k)

D−→ sup
0<t6N

ρ(t) max
06s6t

‖W1(1 + t)−W1(1 + s)− (t− s)W2(1)‖A

(b) Open-end procedure
If additionally regularity conditions RC.2b) and RC.1b)-c) hold, then we get :

(i) sup
16k<∞

w(m, k)Γ2(m, k, h2)
D−→ sup

t>0
ρ(t) ‖W1(t)−W1(th2)− t(1− h2)W2(1)‖A ,

(ii) sup
16k<∞

w(m, k)Γ3(m, k) = sup
t>0

ρ(t) max
06s6t

‖W1(t)−W1(s)− (t− s)W2(1)‖A

In all cases {W1(t) : t > 0} and {W2(t) : t > 0} are independent Wiener processes
with covariance matrices Σ1 and Σ2 as in Assumption RC.1a).
The matrix A in Γj = Γj,A, j = 2, 3, can be replaced by a consistent estimator.

For a weight function as in (2.1) the limit simplifies for Σ1 = Σ2 because it can then
be expressed as a supremum over [0, 1] (rather than over an unbounded set).

Theorem 2.2. If Σ1 = Σ2, then it holds with a weight function as in (2.1)

(a) sup
t>0

∥∥∥∥∥∥W1(1 + t)−W1(1 + th2)− t(1− h2)W2(1)

(1 + t)
(

t
1+t

)γ
∥∥∥∥∥∥
A

D
= sup

0<s<1

∥∥∥∥∥∥W1(s)

sγ
− (1− (1− h2)s)

W1

(
h2s

1−(1−h2)s

)
sγ

∥∥∥∥∥∥
A

,

(b) sup
t>0

max
06s6t

∥∥∥∥∥∥W1(1 + t)−W1(1 + s)− (t− s)W2(1)

(1 + t)
(

t
1+t

)γ
∥∥∥∥∥∥
A

D
= sup

0<t<1
max
06s6t

1

tγ

∥∥∥∥W1(t)− t− 1

s− 1
W1(s)

∥∥∥∥
A

,

where {W1(·)} and {W2(·)} are as in Theorem 2.1.

2.1.2 MOSUM

Since the MOSUM statistic has a different weight function, we need to replace Regu-
larity Condition RC.2:

Regularity Condition RC.4. The weight function has the following form

w(h4, k) = h
− 1

2
4 ρ

(
k

h4

)
(2.2)

where ρ is bounded and continuous. Depending on the procedures additional assump-
tions on the behavior of ρ at infinity have to be made that will be specified in the
theorems below.
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2 Asymptotics

For the MOSUM procedure one needs to distinguish two main cases: The case where
the bandwidth h is of the same order as the historic data set i.e. when h = βm+ o(m)
for some 0 < β 6 1 and the situation where it is much smaller, i.e. h/m→ 0.

In the first case, we can use the same regularity conditions on the time series as before,
in the latter case, somewhat different regularity conditions are needed.

Theorem 2.3. Let Regularity Conditions RC.1 (a), RC.3 with γ = 0 and RC.4 hold.
Then, we get the following limit theorem under the null hypothesis and for h4 = βm+
o(m), 0 < β 6 1:

a) Closed-end procedure
For any symmetric positive semi-definite matrix A, we get as m→∞

sup
16k6Nm

w(h4, k)Γ4(m, k, h4)

D−→ sup
0<t6N

β

ρ(t)

∥∥∥∥W1

(
1

β
+ t

)
−W1

(
1

β
+ t− 1

)
− βW2

(
1

β

)∥∥∥∥
A

.

b) Open-end procedure
If additionally RC.1(c) holds and ρ fulfills RC.2 (b), then

sup
16k<∞

w(h4, k)Γ4(m, k, h4)

D−→ sup
0<t<∞

ρ(t)

∥∥∥∥W1

(
1

β
+ t

)
−W1

(
1

β
+ t− 1

)
− βW2

(
1

β

)∥∥∥∥
A

.

Here, {(W1(·),W2(·))} is as in Regularity Condition RC.1. The matrix A in
Γ4 = Γ4,A can be replaced by a consistent estimator.

Remark 2.1. If ρ(t) = 0 for t < 1, i.e. if the supremum is only taken over k > h4,
then the limit simplifies to (with possibly N =∞)

sup
1<t<Nm

ρ(t)

∥∥∥∥W1 (t)−W1 (t− 1)− βW2

(
1

β

)∥∥∥∥
A

for independent Wiener processes {W1(·)} and {W2(·)} with covariance matrices Σ1

and Σ2 respectively. Under RC.1(b) and if ρ fulfills the assumption in RC.2 (a) for
t→ 0 one can also use the lower bound max(m+ 1,m+ k − h4 + 1) resulting also in
a non-overlapping MOSUM.

The assumption RC.2 (b) is too strict for some weight functions that have been pro-
posed in the literature for h/m→ 0. However, in order to get a proper limit distribu-
tion for these weight functions, more moments of the process are required (see Horváth
et al. (2008) for an extensive discussion).

In order to make this more precise, we need the following stronger assumptions:

Regularity Condition RC.5. Let {Xt} (under H0) be stationary and assume there
exists (possibly after changing the probability space) a Wiener process {W1(t), 0 6 t <
∞} with covariance matrix Σ1 such that, as k →∞

k∑
t=1

H(Xt, θ0)−W1(k) = O
(
k

1
ν

)
a.s. for some ν > 2. (2.3)

The value of ν usually corresponds to the number of moments of H(Xt, θ0). The larger
it is, the closer the partial sum process is already to a Wiener process. We will see
that this allows us to use boundary functions that grow to zero slower at infinity.

10



2 Asymptotics

Regularity Condition RC.6. The following approximation holds under H0, where
N(m) is the observation horizon and can be infinite:

sup
16k<N(m)+1

min(h
−1/2
4 , h

1/ν−1/2
4 k−1/ν)

∥∥∥∥∥
m+k∑

i=m+k−h4+1

H(Xt, θ̂m)

−

 m+k∑
i=m+k−h4+1

H(Xt, θ0)− h4
m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1)

with ν as in RC.5.

We can now also state the assertion for h4/m→ 0.

Theorem 2.4. Let Regularity Conditions RC.4, RC.5 and RC.6 hold. Let the weight
function ρ fulfill lim supt→∞ t1/νρ(t) < ∞, ν as in RC.5. Then, we get the following
limit theorem under the null hypothesis and for h4/m → 0 for the closed-end (with
N(m) = Nm) as well as open-end procedure with N(m) =∞:

For any symmetric positive semi-definite matrix A, we get

sup
16k<N(m)+1

w(h4, k) Γ4(m, k, h4)
D−→ sup

0<t<∞
ρ(t) ‖W (t+ 1)−W (t)‖A ,

where {W (t) : t > 0} is a Wiener process with covariance matrix Σ1. The matrix A
in Γ4 = Γ4,A can be substituted by a consistent estimator.

Remark 2.2. If ρ fulfills RC.2 (b) we can replace RC.5 by RC.1(a) and (c) and need
RC.6 with ν = 1 in addition to stationarity under H0 with an analogous proof to the
proof of Theorem 2.1.

Because the above theorem still excludes some weight functions that have been pro-
posed in the literature such as ρ(t) = max(1, log(1 + t))−1/2 even in the closed-end
procedure, Horváth et al. (2008) suggested to use an h4-closed-end procedure in the
sense that the observation horizon ends after Nh4 observations for some finite N . In
this case, we get the following limit distribution:

Corollary 2.1. Let RC.1 (a), RC.4 as well as RC.6 (with any ν) hold. Then we get
under the null hypothesis for any symmetric positive definite matrix A

sup
16k6Nh4

w(h, k) Γ4(m, k, h4)
D−→ sup

0<t<N
ρ(t) ‖W (t+ 1)−W (t)‖A ,

where {W (t) : t > 0} is a Wiener process with covariance matrix Σ1. The matrix A
in Γ4 = Γ4,A can be substituted by a consistent estimator.

2.2 Linear regression model

In this section, we will prove the above regularity condition RC.6 for the MOSUM
procedure with h4/m→ 0 for the linear regression model as in Section 1.2.1, showing
that this condition can principally be extended to other situations as well. The other
assumptions on the stochastic process have already been used by Kirch and Kamgaing
(2015) and shown to be valid in a large variety of situations.

Theorem 2.5. Let h4

m → 0 and the errors {εi} be i.i.d. and independent of the regres-
sors {xi}. Furthermore, let {xt} be stationary and satisfy

1

n

n∑
t=1

xtx
T
t −C = O(n−τ ) a.s., (2.4)

for a positive definite matrix C and some τ > 0. Then, we get for the functions G
and H as in Section 1.2.1:

11



2 Asymptotics

(a) RC.6 holds for the closed-end procedure with time horizon Nh4.

(b) If additionally the regressors {xi} fulfill a strong invariance principle

k∑
i=1

(xt − c1)−W (k) = O(k
1
ν ) a.s., ν > 2,

where c1 the first column of the matrix C and W is a Wiener process with some
covariance matrix Σ. Then RC.6 also holds for the closed-end procedure with time
horizon Nm as well as the open-end procedure.

2.3 Consistency under alternatives

In this section, we will show that under mild conditions all monitoring schemes will
stop in finite time with probability approaching one as m → ∞ if a change occurs.
This means that the corresponding testing procedures have asymptotic power one.

Under the below regularity conditions Kirch and Kamgaing (2015) have shown this
property for the CUSUM statistic. The same holds true for the other three statistics.
For notational ease, we let

Xt =

{
Zt, t 6 m+ k∗,

Yt, t > m+ k∗.

Regularity Condition RC.7.

(a) The time series before the change fulfills

m+k∗∑
t=m+1

H(Xt, θ̂m) = oP (k∗).

(b) {Yt} is stationary and independent of θ̂m and it holds as l→∞

1

l

∥∥∥∥∥∥
l∑

j=1

(
H(Yj , θ̂m)− EH

)∥∥∥∥∥∥ = oP (1),

for some EH .

(c) It holds A1/2EH 6= 0.

(d) It holds k∗/m 6 λ (for statistics j = 1, 2, 3) and k∗/h 6 λ for the MOSUM
statistic (j = 4) for some λ > 0. Furthermore, there exists a ball U(x0) around
x0 with x0 > λ and ρ(x) > c > 0 for x ∈ U(x0) (where we set ρ(x) = 0 if xm
(resp. xh in the MOSUM case) is larger than the observation horizon).

(e) In the open-end procedures with j = 1, 2, 3 for an arbitrary late change k∗ it holds
lim inf
x→∞

xρ(x) > 0.

Regularity Condition RC.7 (a) follows from the results of the previous section, if {Zt}
fulfills the assumptions under the null hypothesis. Condition (b) is stronger then
necessary but unifies the treatment for all schemes. If this assumption is not fulfilled
it can be replaced by a corresponding condition, where the lower and upper limit of
the sum depend on the monitoring scheme at hand (see Kirch and Kamgaing (2015),

12



3 Simulation study and data analysis

Section 4 in Weber (2017) or proofs below for details). Conditions (d) and (e) are
conditions on the weight function in connection with the location of the change but
are rather mild.

Condition (c) is the key condition in the sense that it tells us what changes can be
detected with a given monitoring function H and a given matrix A.

Theorem 2.6. Let the alternative hypothesis hold in addition to regularity conditions
RC.7 (a)-(c). For the closed-end-procedure let assumption (d) be fulfilled, for the open-
end procedure either (d) or for all statistics except the MOSUM statistic (e). Then it
holds

sup
16k<N(m)

wj(k)Γj(m, k)
P−→∞.

for all j = 1 − 4 for the closed-end procedures with N(m) = Nm + 1 as well as the
open-end procedures with N(m) = ∞ (with the exception of the MOSUM statistic).
The matrix A in Γj = Γj,A can be substituted by a consistent estimator.

Remark 2.3. Because the sums in the MOSUM statistic have fixed length, we can not
allow for an abritarily late change. However, if k∗ = o(h1+ν/2) and lim infx→∞ x1/νρ(x) >
0, then it is detectable for any MOSUM procedure with observation horizon larger than
k∗ + h.

3 Simulation study and data analysis

3.1 Simulation study

In this section we compare all four monitoring schemes in terms of their size, power and
run length i.e. the time until an alarm is given. Because a higher empirical size leads to
a better power and shorter run-length, we can only compare the power in a meaningful
way when we fix the size. So for a comparison we use the size-corrected power and
size-corrected run-length i.e. the power respectively run-length corresponding to the
true (not nominal) size α. Furthermore, we give a kind of density estimator of the
run-length which we scale so that it integrates to the size-corrected power (rather than
one). One can think of this as a probability distribution with a continuous part as
given by our density estimation and a discrete part at infinity (indicating that the
procedure never rejected).

All of the empirical results are based on a training period of length m = 100, a mon-
itoring period of 200, 2500 repetitions and standard normal errors. For the CUSUM,
Page-CUSUM and mMOSUM we use the boundary function (2.1) and for the MOSUM
we use

w(h, k) =

(
2 max

{
1, log

(
1 +

k

h

)})− 1
2

(3.1)

which has been proposed by Horváth et al. (2008) and Aue et al. (2008) (with the
limit as in Corollary 2.1). In each case N is chosen so that we match the monitoring
length of 200 (i.e. Nm = 200 for j = 1, 2, 3 and Nh = 200 for the MOSUM statistic).

Because we are mainly interested in a comparison of all four monitoring schemes, we
use the location model Xt = µ+∆1{t>k∗}+ εt with µ = 0 and ∆ 6= 0. The procedures
are based on G(Xt, µ) = H(Xt, µ) = Xt − µ. We use the true error variance σ2 = 1.

Table 3.1 reports the empirical sizes for the different procedures. The MOSUM pro-
cedure holds the size quite nicely. All other procedures are conservative in particular

13



3 Simulation study and data analysis

γγγ

0 0.25 0.45

CUSUM 1.12 (2.96) 2.32 (5.92) 3.36 (5.96)

Page-CUSUM 0.96 (2.76) 1.8 (5.32) 2.16 (3.84)

mMOSUM

h2 = 0.1h2 = 0.1h2 = 0.1 0.88 (3) 1.92 (4.48) 3.04 (6.88)
h2 = 0.4h2 = 0.4h2 = 0.4 1.76 (3.68) 2.88 (6.08) 4.08 (8.84)
h2 = 0.9h2 = 0.9h2 = 0.9 4.4 (7.76) 8.76 (14.24) 38.04 (44.8)

MOSUM h4h4h4

10 20

4.24 (8.4) 5.04 (10.56)

Table 3.1: Empirical size (in %) for a nominal level of 5 (10) %

for smaller values of γ with the exception of the mMOSUM with a large bandwidth
h2 = 0.9 and γ 6= 0. The problem in this case is that there are only very few obser-
vations used in the detector at the beginning of the monitoring period which causes
many early false alarms if those observations tend to be far away from the monitoring
mean. Since this effect vanishes asymptotically, it is not accounted for by the asymp-
totic distribution. A simple solution is to wait for am e.g. am =

√
m observations

before starting the monitoring (which is permitted by Assumption RC.2). This solves
the problem according to our empirical results in Table 3.2. Similarly, the plot of the
run lengths in Figure 3.1 clearly shows a tendency of the mMOSUM with γ = 0.25
and h2 = 0.9 to raise a significant number of false alarms at the very beginning of the
monitoring – an effect that disappears if one starts monitoring only with an delay of am
observations (see Figure 3.2). From these plots, one can clearly see that the MOSUM
procedures also have some trouble with early (and in contrast to the mMOSUM not
only very early) false alarms.

Table 3.3 reports the size-corrected power for all procedures. First of all, somewhat
surprisingly the use of γ = 0 is always best in all situations possibly due to the fact
that the other choices of γ only yield an advantage for an almost immediate change
point.

The mMOSUM detector with h4 = 0.4 and somewhat less so the Page-CUSUM per-
form very well in all situations and are only outperformed by an mMOSUM with a
bandwidth h2 chosen according to whether an early, medium or late change occurs.

γγγ

0 0.25 0.45

h2 = 0.1h2 = 0.1h2 = 0.1 0.88 (3) 1.92 (4.48) 2.32 (5.08)
h2 = 0.4h2 = 0.4h2 = 0.4 1.76 (3.68) 2.88 (6.08) 2.2 (5.04)
h2 = 0.9h2 = 0.9h2 = 0.9 4.4 (7.76) 4.76 (8.84) 3.6 (6.36)

Table 3.2: Empirical size (in %) of mMOSUM statistic with am =
√
m for a nomial

level of 5 (10) %
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3 Simulation study and data analysis
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(a) k∗ = 10,∆ = 0.5, γ = 0
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(b) k∗ = 150,∆ = 0.5, γ = 0
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(c) k∗ = 40,∆ = 1, γ = 0.25
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(d) k∗ = 150,∆ = 1, γ = 0.25

Figure 3.1: Run-length-plot (level at 5%)
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(a) k∗ = 40
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Figure 3.2: Run-length-plot (∆ = 1, γ = 0.25) when monitoring only starts after am =√
m = 10 observations, level at 5%
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3 Simulation study and data analysis

γγγ

k∗k∗k∗ 0 0.25 0.45

CUSUM 0.1m0.1m0.1m 95.84 95.24 92.4
0.4m0.4m0.4m 86.36 84.48 76.24

mmm 45.32 42.76 31.16
1.5m1.5m1.5m 13.24 11.76 8.68

Page-CUSUM 0.1m0.1m0.1m 97.08 96.64 94.8
0.4m0.4m0.4m 92.16 90.76 85.36

mmm 55.36 50.32 39.76
1.5m1.5m1.5m 14.96 12.52 9.72

mMOSUM

h2 = 0.1h2 = 0.1h2 = 0.1 0.1m0.1m0.1m 97.32 96.88 93.76
0.4m0.4m0.4m 91.92 89.72 82.08

mmm 51.48 46.28 34.4
1.5m1.5m1.5m 15.04 12.28 9.24

h2 = 0.4h2 = 0.4h2 = 0.4 0.1m0.1m0.1m 96 95.28 87.64
0.4m0.4m0.4m 94.84 93.16 82.36

mmm 74 67.08 46.68
1.5m1.5m1.5m 21 16.28 9.12

h2 = 0.9h2 = 0.9h2 = 0.9 0.1m0.1m0.1m 69.52 50.36 5.04
0.4m0.4m0.4m 68.8 47.08 5.04

mmm 57.6 32.64 5.04
1.5m1.5m1.5m 37.36 18.48 5.04

mMOSUM
with am =

√
m = 10am =
√
m = 10am =
√
m = 10

h2 = 0.1h2 = 0.1h2 = 0.1 0.1m0.1m0.1m 97.32 96.88 95.16
0.4m0.4m0.4m 91.92 89.72 84.2

mmm 51.48 46.24 37.08
1.5m1.5m1.5m 15 12.28 9.52

h2 = 0.4h2 = 0.4h2 = 0.4 0.1m0.1m0.1m 96 95.28 91.44
0.4m0.4m0.4m 94.84 93.12 86.6

mmm 74 67.04 52.6
1.5m1.5m1.5m 21 16.24 10.6

h2 = 0.9h2 = 0.9h2 = 0.9 0.1m0.1m0.1m 69.52 62.68 38.28
0.4m0.4m0.4m 68.8 59.2 28.76

mmm 57.56 42.48 14.92
1.5m1.5m1.5m 37.32 24.4 8.32

MOSUM h4h4h4
10 20

0.1m0.1m0.1m 45.92 75.68
0.4m0.4m0.4m 24.12 56.96

mmm 10.4 30
1.5m1.5m1.5m 6.68 15

Table 3.3: Size-adjusted power (in %) for the size 5%
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3 Simulation study and data analysis
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Figure 3.3: Actual time series and detector statistics for Boston Homicide Data

This is also confirmed by the plots of the run-lengths 3.1 as well as 3.2. The MOSUM
procedure has a very quick detection time but at the cost of many false alarms and a
smaller detection rate in comparison to the other statistics.

3.2 Data Analysis

We first analyse the Boston Homicide data set contained in the R-package strucchange
(see Zeileis et al. (2002)) containing the monthly number of youth homicides in Boston.
In early 1995 a policing initiative – the Boston-Gun-Project was started in order to
lower the youth homicides. The so-called ’Operation Ceasefire’ began in the late spring
of 1996. Zeileis (2006) analyzed this data set in an a-posteriori change point setting not
too different from ours showing that indeed a change occurred around that time. While
the data is count data that could well be modelled by a Poisson model, we will not make
use of this fact in this analysis, although the theory allows for this (see also Section
6.5 in Kirch and Kamgaing (2015) or Section 10.4 in Kirch and Kamgaing (2016)).
Instead we simply use it as input sequence for the location model from Section 1.2.2
based on the least-squares estimating and monitoring functions that have already been
used in the previous section. This is in accordance with the asymptotic theory with the
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3 Simulation study and data analysis
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Figure 3.4: Estimated residuals and detector statistics for exchange rate data, m = 40
(indicated by the vertical line in (a))

drawback that the corresponding procedure is not optimal in this situation. Figure 3.3
gives the time series as well as the corresponding detectors Γj(m, k)/(cjwj(k)) (for
γ = 0). This normalization is chosen for easier visual comparison of the different
procedure as in all cases the null hypothesis is rejected as soon as the vertical 1-line is
crossed. The change should occur around 50 in the time series and we consider historic
data lengths of 24 (late change), 36 (medium late change) and 48 (early change).

Only the mMOSUM (with h2 = 0.4) detects the change point within the monitoring
period in all cases where the detection time is quicker the earlier the change occurs
within the monitoring period. The MOSUM (h4 = 7), CUSUM and Page-CUSUM
detect the change point only within the monitoring period for m = 48), where in this
case the MOSUM has the quickest detection rate (only merely reaching significance).

As a second example we apply our methodology to monitor an exchange rate regime.
More precisely, we apply a linear regression setup to the daily log returns of the
Chinese Yuan Renminbi (CNY) from July 26nd, 2005 to July 31, 2009, where we use
the daily log returns of the following currencies as regressors: USD (US Dollar), JPY
(Japanese yen), EUR (Euro), GBP (British pound). The same data set has been
used by Zeileis et al. (2010), where also more information on the model as well as
the data set can be found. In the analysis of the data set in that paper no change
in the regression coefficients can be found, but a change in the residual variance has
been found. For this reason, we will use the procedures based on the functions G
and H from Section 1.2.1 to find changes in the regression coefficients (or actually

the mean of the residuals) as well as G̃ and H̃ from Section 1.2.1 to find variance
changes in the residuals. The results for a monitoring period of m = 40 can be
found in Figure 3.4. Subfigure (a) shows the estimated residuals where the regression
coefficient is estimated from the historic data set. The vertical line indicates the point
in time when monitoring starts. A visual inspection shows no visible mean shift but
several possible changes in variance. Indeed, both assumptions are confirmed by the
monitoring, with no monitoring scheme detecting a shift in the residuals (Subfigure
(b)) but all of them detecting a variance change (Subfigure (a)). There are some
interesting observations from the latter example: The CUSUM, Page-CUSUM and
mMOSUM (h = 0.4) give an alarm around 90, where the increase starts around 70.
This coincides with a period of smaller variability between 70 and 100 as can be seen
in (a). The mMOSUM with h = 0.9 gives an alarm around 120, which corresponds
to a series of some large variability shortly before 120. The other statistics are not
influenced by this because this is balanced out by the relatively small variability from
before. This is also the reason why the three previously significant statistics drop
under the significance line again at that point. Around 160 all monitoring schemes
start to increase again and all but the CUSUM become eventually significant during

18



4 Proofs

the observation period. This is due to the large variability at the end of the monitoring
period, where the mMOSUM (h = 0.9) is fastest, followed by the mMOSUM (h = 0.4),
the Page-CUSUM, the mMOSUM (h = 0.1) and the MOSUM (h = 20). Only the
CUSUM is not yet significant because all residuals from 41 to the present are used so
that it takes much longer for a late change to be detected.

Both examples confirm the balanced behavior of the mMOSUM with h = 0.4 and to
a somewhat lesser degree the Page-CUSUM detector making them preferable in many
situations.

4 Proofs

Because the proofs are in parts similar, we do not provide all details of all proofs, but
restrict our attention to the key steps. Missing details can be found in Weber (2017),
Part I.

Proof of Theorem 2.1.

By RC.2 and RC.3 it holds

sup
16k<N(m)

w(m, k)

∥∥∥∥∥∥
m+k∑

i=m+bkh2c+1

H(Xt, θ̂m)

−

 m+k∑
j=m+bkh2c+1

H(Xt, θ0)− k − bkh2c
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
6 2 max

(
sup

16k6m

(
k

m

)γ
ρ

(
k

m

)
, sup
k>m

k

m
ρ

(
k

m

))

× sup
16k<N(m)

min

(
1

m
1
2−γkγ

,
m1/2

k

)∥∥∥∥∥
m+k∑
i=m+1

H(Xt, θ̂m)

−

 m+k∑
j=m+1

H(Xt, θ0)− k

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ = oP (1)

(4.1)

Consequently, it is sufficient to consider the limit distribution of

sup
16k<N(m)

w(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkh2c+1

H(Xt, θ0)− k − bkh2c
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥ .
With the functional limit theorem in RC.1a)i) it holds for any τ,N > 0

sup
bτmc6k6Nm

w(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkh2c+1

H(Xj , θ0)− k − bkh2c
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
A

= sup
bτmc6k6Nm

sup
k
m6t< k+1

m

ρ

(
bmtc
m

)∥∥∥∥∥∥ 1√
m

m+bmtc∑
j=m+bbmtch2c+1

H(Xj , θ0)

−bmtc − bbmtch2c
m

1√
m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
A

D−→ sup
τ6t6N

ρ(t) ‖W1(1 + t)−W1(1 + th2)− (t− th2)W2(1)‖A
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4 Proofs

For a more general weight function ρ, first note that by RC.1 (b) it holds for all
0 < α < 1

2

max
16k6m

1

m
1
2−αkα

∥∥∥∥∥∥
m+k∑

t=m+bkh2c+1

H(Xt, θ0)

∥∥∥∥∥∥
6 max

16k6m

1

m
1
2−αkα

∣∣∣∣∣
∣∣∣∣∣
m+k∑
t=m+1

H(Xt, θ0)

∣∣∣∣∣
∣∣∣∣∣+ max

16k6m

hα2

m
1
2−α(kh2)α

∣∣∣∣∣∣
∣∣∣∣∣∣
m+bkh2c∑
t=m+1

H(Xt, θ0)

∣∣∣∣∣∣
∣∣∣∣∣∣

= OP (1)

From this we conclude for γ < α < 1
2

sup
16k<τm

w(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkh2c+1

H(Xj , θ0)− k − bkh2c
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
A

6 sup
am6k<τm

1√
m
ρ

(
k

m

)∥∥∥∥∥∥
m+k∑

j=m+bkh2c+1

H(Xj , θ0)

∥∥∥∥∥∥
+ sup
am6k<τm

k − bkh2c
m3/2

ρ

(
k

m

)∥∥∥∥∥∥B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
6 sup

0<t<τ
tαρ (t) sup

16k6τm

1

m1/2−αkα

∥∥∥∥∥∥
m+k∑

j=m+bkh2c+1

H(Xj , θ0)

∥∥∥∥∥∥+OP (1) sup
0<t<τ

tρ (t) = oP (1)

(4.2)

as τ → 0 (uniformly in m), where in the last line also RC.1 (a) was used. This
completes the proof of (a)(i). For (b) note first that by RC.1(c) it holds

sup
k>km

√
km
k

∥∥∥∥∥∥
m+bkh2c∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥∥ 6 sup
k>km

h2
√
km

bkh2c

∥∥∥∥∥∥
m+bkh2c∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥∥
6

√
h2

kmh2
bkmh2c

sup
l>bkmh2c

√
bkmh2c
l

∥∥∥∥∥
m+l∑
t=m+1

H(Xt, θ0)

∥∥∥∥∥ = OP (1).

From this, RC.1(c) and RC.2(b) we conclude

sup
k>Tm

w(m, k)

∥∥∥∥∥∥
m+k∑

j=m+bkh2c+1

H(Xj , θ0)

∥∥∥∥∥∥
A

6
1√
T

sup
k>Tm

k

m
ρ

(
k

m

)
sup
k>Tm

√
Tm

k

∥∥∥∥∥∥
m+k∑

j=m+bkh2c+1

H(Xj , θ0)

∥∥∥∥∥∥
A

=
1√
T
OP (1)

P−→ 0 (4.3)

as T → ∞ (uniformly in m). Analogously, we get for the Wiener process as in RC.1
for T →∞ uniformly in m by the law of iterated logarithm

sup
t>T

ρ(t) ‖W1(1 + t)−W1(1 + th2)‖A = oP (1).
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4 Proofs

By RC.1 and RC.2 it holds for m→∞ and T fixed

sup
k>τm

∥∥∥∥∥∥w(m,min(k,mT ))

m+min(k,mT )∑
j=m+bmin((k,mT )h2)c+1

H(Xj , θ0)− w(m, k)
k − bkh2c

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
A

D−→ sup
t>τ
‖ρ(min(t, T )(W1(1 + min(t, T ))−W1(1 + min(t, T )h2))− t(1− h2)ρ(t)W2(1)‖A .

A careful combination of the above results yields assertion (b)(i).

The proof of (ii) is very close, so we concentrate on the difference. First, by an
argument similar to (4.1) it is sufficient to consider the limit distribution of

sup
16k<N(m)

w(m, k) max
06i<k

∥∥∥∥∥∥
m+k∑

j=m+i+1

H(Xj , θ0)− k − i
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
A

.

The main difference in the proof is the following step:

sup
16k<N(m)

min

(
1

m
1
2−γkγ

,
m1/2

k

)

max
16i<k

∥∥∥∥∥∥
m+k∑

t=m+i+1

H(Xt, θ̂m)−

 m+k∑
t=m+i+1

H(Xt, θ0)− k − i
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
6 2 sup

16i<N(m)

min

(
1

m
1
2−γiγ

,
m1/2

i

)∥∥∥∥∥∥
m+i∑
t=m+1

H(Xt, θ̂m)−

 m+i∑
t=m+1

H(Xt, θ0)− i

m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
= oP (1).

A similar argument can be used to obtain analogously to (4.2)

sup
16k<τm

w(m, k) max
06i<k

∥∥∥∥∥∥
m+k∑

j=m+i+1

H(Xj , θ0)− k − i
m

B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
A

= oP (1)

as τ → 0 uniformly in m.

A major difference in the proofs occurs when dealing with k > Tm as in (4.3), where
the key difference is the following:

sup
k>Tm

√
m

k
max
16i6k

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
6

1

T
max

16i6m

1√
m

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥+
1√
T

max
m6i6

√
Tm

√
m√
Tm

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
+

1

T 1/4
max√

Tm6i6Tm

T 1/4
√
m

Tm

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥+
1√
T

max
i>Tm

√
Tm

i

∥∥∥∥∥∥
m+i∑

j=m+1

H(Xj , θ0)

∥∥∥∥∥∥
= T−1/4OP (1),

where this follows from RC.1 (b) for the first summand and RC.1 (c) for the last three
summands.

The other parts of the proof are analogously to the arguments for (i).
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4 Proofs

Proof of Theorem 2.2. By Hušková and Koubková (2005), proof of Theorem 1, it
holds

{W1(1 + t)− tW2(1)} D=
{

(1 + t)W

(
t

1 + t

)}
,

hence

sup
t>0

∥∥∥∥∥∥W1(1 + t)− tW2(t)− (W1(1 + th2)− th2W2(1))

(1 + t)
(

t
1+t

)γ
∥∥∥∥∥∥
A

D
= sup

t>0

∣∣∣∣∣∣
∣∣∣∣∣∣
(1 + t)W1

(
t

1+t

)
− (1 + th2)W1

(
th2

1+th2

)
(1 + t)

(
t

1+t

)γ
∣∣∣∣∣∣
∣∣∣∣∣∣
A

D
= sup

0<r<1

∣∣∣∣∣∣
∣∣∣∣∣∣W1(r)

rγ
− (1− (1− h2)r)

W1

(
h2r

1−(1−h2)r

)
rγ

∣∣∣∣∣∣
∣∣∣∣∣∣
A

,

where the last equality follows from the substitution r = t/(1 + t), proving (a). The
proof of (b) is analogous, where in the last step the mapping (s, t) 7→ (s/(1−s), t/(1−t))
has been used.

Proof of Theorem 2.3. The proof is analogous to the proof of Theorem 2.1 and
therefore omitted.

Proof of Theorem 2.4. As in the proof of Theorem 2.1 by RC.6 it is sufficient to
consider

sup
16k<N(m)+1

wM (h4, k)

∥∥∥∥∥∥
m+k∑

i=m+k−h4+1

H(Xi, θ0)− h4
m
B(θ0)

m∑
j=1

G(Xj , θ0)

∥∥∥∥∥∥
A

= sup
16k<N(m)+1

wM (h4, k)

∥∥∥∥∥
m+k∑

i=m+k−h4+1

H(Xi, θ0)

∥∥∥∥∥
A

+ oP (1)

D
= sup

16k<N(m)+1

h
−1/2
4 ρ(k/h4)

∥∥∥∥∥
k+h4∑
i=k+1

H(Xi, θ0)

∥∥∥∥∥
A

+ oP (1)

By RC.5 we get

sup
16k<N(m)+1

h
−1/2
4 ρ(k/h4)

∥∥∥∥∥
k+h4∑
i=k+1

H(Xi, θ0)

∥∥∥∥∥
A

= sup
16k<N(m)+1

h
−1/2
4 ρ(k/h4) ‖W1(k + h4)−W1(k)‖A

+OP

(
max

16k<N(m)+1

(k + h4)1/ν

h
1/2
4

min

(
1,

(
h4
k

)1/ν
))

= sup
16k<N(m)+1

h
−1/2
4 ρ(k/h4) ‖W1(k + h4)−W1(k)‖A + oP (1).

The first summand converges to

sup
0<t<∞

ρ(t)‖W1(t+ 1)−W1(t)‖A,

which is well-defined by Theorem 1.2.1 in Csörgö and Révész (1981). This completes
the proof.
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4 Proofs

Proof of Corollary 2.1. The proof is analogous to the proof of Theorem 2.4, where
the supremum is taken over a finite stretch after substituting k with k/h4.

Proof of Theorem 2.5. For better readibility we use h = h4 in this proof. Some
calculations yield

β̂m − β0 =

(
m∑
i=1

xTi xi

)−1 m∑
i=1

xiXi − β0 = C−1m
1

m

m∑
i=1

xiεi.

With ε̂i = Xi − xTi β̂m this implies

m+k∑
i=m+k−h+1

ε̂i =

m+k∑
i=m+k−h+1

εi −

(
m+k∑

i=m+k−h+1

xi

)T
C−1m

1

m

m∑
i=1

xiεi, (4.4)

whereCm = 1
m

m∑
i=1

xix
T
i . Denote by c1 the first column ofC, so that by cT1C

−1∑m
i=1 xiεi =∑m

i=1 εi it holds

m+k∑
i=m+k−h+1

ε̂i −

(
m+k∑

i=m+k−h+1

εi −
h

m

m∑
i=1

εi

)

=

 1√
m

( m+k∑
i=m+k−h+1

xi

)T
− hcT1

(C−1m −C−1)+
1√
m

( m+k∑
i=m+k−h+1

xi

)T
− hcT1

C−1
+

h√
m
cT1
(
C−1m −C

−1)) 1√
m

m∑
i=1

xiεi. (4.5)

Because {εi, 1 6 i <∞} and {xi, 1 6 i <∞} are independent, it holds

m∑
i=1

xiεi = OP (
√
m). (4.6)

Furthermore, observe that by (2.4)

sup
16k<N(m)

min

(
1√
h
,

1

h
1
2−

1
ν k

1
ν

)
h√
m
cT1
(
C−1m −C

−1) 6√ h

m
cT1
(
C−1m −C

−1) = oP (1).

(4.7)

By the stationarity of the regressors xi we obtain

sup
16k6Nh

1√
m

min

(
1√
h
,

1

h
1
2−

1
ν k

1
ν

) ∣∣∣∣∣
m+k∑

i=m+k−h+1

xi − hc1

∣∣∣∣∣
D
= sup

16k6Nh

1√
m

min

(
1√
h
,

1

h
1
2−

1
ν k

1
ν

) ∣∣∣∣∣
k+h∑
i=k+1

xi − hc1

∣∣∣∣∣
6

√
h

m
sup

16k6Nh

1

h

∣∣∣∣∣
k+h∑
i=k+1

xi − hc1

∣∣∣∣∣
6 sup

16k6Nh

1

h

∣∣∣∣∣
k+h∑
i=1

xi − (k + h)c1

∣∣∣∣∣+ sup
16k6Nh

1

h

∣∣∣∣∣
k∑
i=1

xi − kc1

∣∣∣∣∣
6 (N + 1) sup

16k6Nh

1

Nh+ h

∣∣∣∣∣
k+h∑
i=1

xi − (k + h)c1

∣∣∣∣∣+N sup
16k6Nh

1

Nh

∣∣∣∣∣
k∑
i=1

xi − kc1

∣∣∣∣∣ = oP (1).

23



4 Proofs

Putting this together with (4.5), (4.6) and (4.7) yields assertion (a).

For (b) it is sufficient to consider

sup
k>Nh

min

(
1√
h
,

1

h
1
2−

1
ν k

1
ν

) ∣∣∣∣∣
k+h∑
i=k+1

xi − hc1

∣∣∣∣∣
= sup
k>Nh

min

(
1√
h
,

1

h
1
2−

1
ν k

1
ν

)(
|W 1(k + h)−W 1(k)|+OP

(
(k + h)

1
ν

))
6 sup
k>Nh

(
h

k

) 1
ν
∣∣∣∣W 1

(
k

h
+ 1

)
−W 1

(
k

h

)∣∣∣∣+OP (1) sup
k>Nh

(
h

k

) 1
ν (k + h)

1
ν

√
h

6 sup
t>N

t−
1
ν ‖W 1(t+ 1)−W 1(t)‖+ oP (1) = oP (1)

by Theorem 1.2.1 in Csörgö and Révész (1981), RC. 4a) and c).

Proof of Theorem 2.6. We start with the proof for the mMOSUM under RC.7
(d). Choose k̃ = bx0mc. If bk̃h2c < k∗, then by RC.7 (a) and (b), it holds

m+k̃∑
t=m+bk̃h2c+1

H(Xt, θ̂m) =

m+k∗∑
t=m+bk̃h2c+1

H(Xt, θ̂m) +

m+k̃∑
t=m+k∗+1

H(Xt, θ̂m)

= m((x0 − k∗/m)EH + oP (1)) > m ((x0 − λ) EH + oP (1)) ,

from which we derive by RC.7 (c) and (d)

w(m, k̃)Γ2(m, k̃, h2) >
√
mρ (x0 + o(1)) (x0 − λ) (‖EH‖A + oP (1))

P−→∞.

Similarly, if bk̃h2c > k∗, then

w(m, k̃)Γ2(m, k̃, h2) >
√
mρ (x0 + o(1)) x0(1− h2) (‖EH‖A + oP (1))

P−→∞.

In case of RC.7 (c) and (e) we get similarly by the choice k̃ = dk∗/h2e

sup
k>1

w(m, k)

∥∥∥∥∥∥
m+k∑

m+bkh2c+1

H(Xt, θ̂m)

∥∥∥∥∥∥
A

>
k̃

m
ρ

(
k̃

m

)
m (1− h2) (‖EH‖A + oP (1))

P−→∞.

The proof of the Page-CUSUM (j = 3) follows from this by choosing i = bkh2c or
from the proof for the CUSUM (Kirch and Kamgaing (2015)) by choosing i = 1. For

the MOSUM statistics we get analogously with the choice k̃ = bx0h4c under RC.7(c)
and (d)

w(h4, k̃)Γ4(m, k̃, h4) >
√
h4ρ (x0 + o(1)) min(x0 − λ, 1) (‖EH‖A + oP (1))

P−→∞,

completing the proof.
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