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Abstract

We introduce a moving Fourier transformation for locally stationary time series,
which captures the time-varying spectral density in a similar manner as the clas-
sical Fourier transform does for stationary time series. In particular, the resulting
Fourier coefficients as well as moving local periodograms are shown to be (almost
all) asymptotically uncorrelated. The moving local periodogram is obtained by
thinning the local periodogram to avoid multiple information present at different
but close points in time. We obtain consistent estimators for the local spec-
tral density at each point in time by smoothing the moving local periodogram.
Furthermore, the moving Fourier coefficients respectively periodograms are well
suited to adapt stationary frequency-domain bootstrap methods to the locally
stationary case. For the wild TFT-bootstrap it is shown that the corresponding
bootstrap covariance of a global locally stationary bootstrap samples captures
the time varying covariance structure of the underlying locally stationary time
series correctly. Furthermore, this bootstrap in addition to adaptations of other
frequency domain bootstrap methods are used in a simulation study to obtain
uniform confidence bands for the time-varying autocorrelation at lag one. Finally,
this methodology is applied to a wind data set.
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1 Introduction

Many longer time series cannot be described by stationary models sufficiently well,
while those models often describe the statistical behavior locally quite well. One
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1 Introduction

important concept allowing for such effects was formally introduced and analyzed
by Dahlhaus (1997), which allows in particular for valid asymptotic theory and is
developed with spectral methods in mind. In this work we develop a modification of
the Fourier transform in this locally stationary framework – the so called moving local
Fourier transform - which enables us to transfer the local structure of the data from
the time domain to the frequency domain, yet preserving the convenient property of
the resulting Fourier coefficients being uncorrelated in the frequency domain. The
local periodogram that has already previously been discussed in the literature is very
convenient if one is only interested in the local structure of the time series, however,
not very suited for global theory. More precisely, the statistical properties of the local
periodogram around a given time point are equivalent to the periodogram of stationary
time series: In particular periodogram ordinates are asymptotically independent and
exponentially distributed with a parameter depending on the local spectrum at that
point in time. On the other hand, if one combines all the local periodograms for
all time points statistical information is duplicated as the statistical properties of the
local periodogram centered around one time point and the time point next to it will be
almost identical. In particular, this results in very complicated dependency relations
between the local periodogram ordinates around one point and the local periodogram
ordinates around a neighboring point. The moving local Fourier transform, that we
propose in this paper, essentially thins out this information making use of the fact that
statistical properties will not change much from one time point to another. To this
end, we only calculate the local Fourier coefficients (periodogram) at one frequency,
then calculate the next frequency based on a window shifted by one. We will prove
that this transformation essentially results in asymptotically independent and normally
distributed (exponentially in case of the corresponding periodograms) moving Fourier
coefficients. We then prove asymptotic consistency of corresponding estimators for the
spectrum.

For stationary time series, frequency domain bootstrap methods have proven quite
useful in many situations Paparoditis (2002). Using the local Fourier transform (re-
lated to the local periodogram) for a local bootstrap works fine as long as it is only
used for inference of the local structure such as the local autocorrelation (see Sergides
and Paparoditis (2009)). However, in order to obtain a global locally stationary boot-
strap sample, the full dependency between local Fourier coefficients corresponding to
different time points needed to be mimicked correctly by the bootstrap which seems a
very difficult task. For this reason Kreiss and Paparoditis (2015) use a global Fourier
transform to adapt the hybrid wild bootstrap to the locally stationary situation where
the local periodogram is merely needed to estimate the local spectra. In this paper,
we propose a different approach by using our moving local Fourier transform. This
is quite close in spirit to the original idea of frequency domain bootstrapping for sta-
tionary time series because the moving local Fourier coefficients have similar statistical
properties globally (i.e. they are asymptotically independent and normal) as stationary
(global) Fourier coefficients. Using a similar moving local Fourier back-transformation
we are able to transform the bootstrap Fourier coefficients back into the time domain.
Consequently, we are able to construct a bootstrap imitation of the original locally
stationary time series. We will focus on an adaptation of the TFT bootstrap by Kirch
and Politis (2011) to locally stationary time series to obtain theoretic results but will
probe in simulations also extensions to other recent frequency domain bootstrap meth-
ods for stationary time series such as the wild hybrid bootstrap (Kreiss and Paparoditis
(2012b)) as well as the autoregressive aided periodogram bootstrap (Kreiss and Papar-
oditis (2003)). One main advantage of getting a locally stationary bootstrap sample
in the time domain is the possibility to construct uniform confidence bounds (say for
the local autocorrelation of order one). While a theoretic analysis of such a procedure
is postponed to future work, we show that this works nicely in simulations.

The paper is organized as follows: In Section 2 we introduce the moving local Fourier
transform (MLFT) as well as the corresponding backtransform. In the formal set-
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2 Moving local Fourier transform (MLFT)

ting of locally stationary time series we obtain asymptotic statistical properties of the
MLFT in Section 2.4 that are similar to corresponding properties of the stationary
Fourier transform such as asymptotic uncorrelatedness of (almost all) moving Fourier
coefficients. The proofs are based on an approximation of the MLFT by the MLFT
of independent random variables which is formally introduced in Section 2.5. In Sec-
tion 2.6 the moving local Fourier transform is used to estimate the time varying spec-
tral density of the underlying process. Section 3 is devoted to introducing how several
stationary frequency domain bootstrap methods can be adopted to locally stationary
time series based on the MLFT, where for the TFT bootstrap it is shown that the
time varying covariance structure is correctly captured by a global bootstrap sample.
In Section 4 these bootstrap methods are applied in a simulation study to obtain uni-
form confidence bounds for the time varying autocorrelation at lag 1 as well as to a
wind data set formerly investigated by several authors. Finally, the proofs are given
in Section 5.

2 Moving local Fourier transform (MLFT)

The main idea behind locally stationary processes is that the statistical structure of
many data sets only changes slowly with time so that in an environment of each point
the time series can be considered to be approximately stationary. To obtain theoretic
results we work with the formal definition of Dahlhaus (1997, 2003) (see Section ??
for details). However, this vague statement is sufficient to understand the idea behind
the moving local Fourier transform that is introduced in this section.

Recently, Sergides and Paparoditis (2009) proposed to use the local periodogram
for bootstrapping certain quantities such as ratio statistics at a given time point
1 6 t0 6 T . To this end, they calculate the periodogram based on the time se-
ries of an appropriate environment of this point only. This is reasonable due to the
assumption that within such an environment the time series say Xt0−m, . . . , Xt0+m be-
haves approximately stationary. Statistical properties of such periodograms are then
essentially the same as for the usual periodogram for stationary time series such that
they can be used to get a consistent estimator of the local spectral density. This works
very well if the environment is chosen appropriately and if the statistical quantity of
interest is only a local quantity. As soon as one is interested in global quantities as
is e.g. necessary for a global locally stationary bootstrap the problem arises that the
local periodogram of a shifted stretch Xt0−m+1, . . . , Xt0+m+1 will carry essentially the
same statistical information but exhibit strong dependence with the local periodogram
of the orginal stretch Xt0−m, . . . , Xt0+m. This dependence makes statistical analysis
much more difficult and appears to pose unsurmountable difficulties in cases where
one tries to bootstrap this periodogram ordinates hence has to mimic the dependency
structure between the periodogram ordinates of different (!) stretches correctly.

On the other hand, the information is more or less duplicated due to the slowly chang-
ing nature of a locally stationary time series if stretches are close together. It is this
latter observation that we will make use of in the following construction of moving
local Fourier coefficients.

2.1 Definition

For ease of notation we assume we have observed X−m+1, . . . , X1, . . . , XT , . . . , XT+m

(where Xj = Xj,T to allow for a formal definition of a slowly moving time series
structure).
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2 Moving local Fourier transform (MLFT)

Define the discrete Fourier coefficients of the stretch Xt0−m, . . . , Xt0+m of length 2m+1
around time point t0 at Fourier frequencies λk := 2πk

2m+1 , k = 1, . . . ,m, (depending on
the length 2m+ 1) by

F(Xt0−m, . . . , Xt0+m;λk) =
1√

2m+ 1

2m∑
l=0

Xl+t0−me
−ilλk .

As already pointed out by applying the same transformation to the shifted stretch
Xt0−m+1, . . . , Xt0+m+1 we obtain essentially the same statistical information as the
local structure of the shifted stretch will not have changed much.

In order to avoid this duplication, we calculate only one Fourier coefficient belonging
to one frequency for each stretch but use the subsequent Fourier frequency for the
adjacent stretch. More precisely, we calculate only the Fourier coefficient at frequency
λmod(t0) for a stretch centered around time point t0, where

mod(j) :=

{
m, if m is a factor of j ∈ Z,
j mod (m) , else

(2.1)

varies between 1 and m.

Definition 2.1 (Moving Fourier coefficients). The moving Fourier coefficients MFk
(of order m), 1 6 k 6 T , of X−m+1, . . . , XT+m are defined by

MFk := F(Xk−m,T , . . . , Xk+m,T ;λmod(k)) =
1√

2m+ 1

2m∑
ν=0

Xν+k−m,T e
−iνλmod(k) ,

(2.2)

where λmod(k) := 2πmod(k)
2m+1 .

Similarly to the discrete Fourier transform for stationary sequences this results in an
approximately uncorrelated sequence of length T with variance proportional to the
local spectral density at frequency mod(k) (confer Theorems 2.1 and 2.2 below). As
such it can be of great use for a statistical analysis of the time series with a potential
for obtaining uniform results. In particular, it can be used for bootstrap purposes
which is the main application in this work.

The main problem remains how one can extract a complete set of Fourier coefficients
for the local structure at some given time point t0. Here, the idea is to collect the
m closest Fourier coefficients, i.e. MFt0−bm/2c, . . . ,MFt0+dm/2e−1, containing the local
information at all frequencies λk, k = 1, . . . ,m, although not necessarily in the correct
order. Bringing them in the correct order of frequency results in the following definition
of moving local Fourier coefficients.

Definition 2.2 (Moving local Fourier coefficients). The moving local Fourier
coefficients (of order m) at time t0 for frequencies λl, l = 1, . . . ,m, are given by

MFt0(λl) :=


MFt0−mod(t0)+l−m, l −mod(t0) > dm/2e,
MFt0−mod(t0)+l, −bm/2c 6 l −mod(t0) < dm/2e,
MFt0−mod(t0)+l+m, l −mod(t0) < −bm/2c.

Furthermore,

MFt0(λ2m+1−j) = MFt0(−j) := MFt0(λj), j = 0, . . . ,m, MFt0(λ0) := 0.

The moving local periodogram MIt0 at time t0 is then defined by

MIt0 (λl) := |MFt0(λl)|2 . (2.3)
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2 Moving local Fourier transform (MLFT)

Note that the three closest Fourier coefficients at frequencies λl were calculated at
time points t0 −mod(t0) + l−m, t0 −mod(t0) + l as well as t0 −mod(t0) + l+m and
the above case distinction picks the one of the three closest to t0, where in case of m
even and equal distance between two the left one is chosen.

The moving local Fourier coefficients at time t0 and all frequencies λl, l = 1, . . . ,m
incorporate the observations Xt0−bm/2c−m, . . . , Xt0+dm/2e−1+m. Of those 3m observa-
tions, Xt0−1−bm/2c, . . . , Xt0+dm/2e occur in all of the moving local Fourier coefficients.

Remark 2.1. Because l − mod(t0) > dm/2e is only possible for mod(t0) 6 bm/2c,
while l − mod(t0) < −bm/2c for mod(t0) > bm/2c + 1, at most two of the cases in
Definition 2.2 can occur for any given time point t0. For mod(t0) = bm/2c + 1 only
the middle case occurs.

Remark 2.2. The assumption that we have data X−m+1,T , . . . , XT+m,T available can
be abandoned by slightly changing the scheme of transformation, employing the ordi-
nary Fourier transform for the first and last stretch and retrieving not one, but m
Fourier coefficients.

2.2 Moving inverse Fourier transform

In this section we define an inverse moving Fourier transform that is needed to obtain
a locally stationary bootstrap sample in the time domain after having bootstrapped
the moving Fourier coefficients in the frequency domain. This transform is not an
inverse transform in an analytical sense as it does not yield the exact same sequence
when applied to the moving Fourier transform of the original input sequence. However,
it conserves statistical properties in an analogous way as the discrete inverse Fourier
transform does for the TFT-bootstrap Kirch and Politis (2011).

To this end, we assume that we have a sequence MF ∗1 , . . . ,MF
∗
T , which will be the

bootstrapped moving Fourier coefficients in this paper. Roughly speaking, we will
then obtain moving local Fourier coefficients MF ∗k (λl), k = 1, . . . , T , l = 1, . . . ,m,
from these in the same manner as in Definition 2.2. Finally, we use a discrete inverse
Fourier transform of MF ∗k (·) at point t to obtain the bootstrap sample X∗t at time t,
t = bm/2c+ 1, . . . , T − dm/2e+ 1.

Definition 2.3 (Moving inverse Fourier transform).
Let MF ∗1 , . . . ,MF

∗
T be moving elements in the frequency domain with moving local coun-

terparts MF ∗t (λj), j = 1, . . . ,m, obtained analogously to Definition 2.2. The moving
inverse Fourier transform is defined by

X∗t := F−1 (MF ∗t (λ1),MF ∗t (λ2), . . . ,MF ∗t (λm); t)

:=
1√

2m+ 1

m∑
l=1

MF ∗t (λl) e
iλlt +

1√
2m+ 1

m∑
l=1

MF ∗t (λl) e
−iλlt (2.4)

with λk = 2π k
N , k = 0, . . . ,m, and t = bm/2c+ 1, . . . , T − dm/2e+ 1.

Remark 2.3. Similarly, to the moving Fourier transform there are more coefficients
MF ∗k needed than are obtained back in the time domain. This is due to the shifting
and similarly to Remark 2.2 can in practise be circumvented by using the discrete
Fourier transformation for all t = 1, . . . , bm/2c + 1 for the first stretch and for all
t = T − dm/2e+ 1, . . . , T for the last stretch.

2.3 Locally stationary processes

Following Dahlhaus (1997, 2003) and Sergides (2008) we will use the following defini-
tion for locally stationary processes to obtain theoretic results.
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2 Moving local Fourier transform (MLFT)

Definition 2.4. A sequence of stochastic processes {Xt,T , t = 1, . . . , T} is called
locally stationary if there exists a representation

Xt,T =

∞∑
j=−∞

at,T (j)εt−j , (2.5)

where the following holds

(a) εt
iid∼ (0, 1) with finite fourth moment Eε4

t <∞,

(b) supt |at,T (j)| 6 K
l(j) , and let {l(j)} be a positive sequence with

l(j) :=

{
1, |j| 6 1

|j| log1+κ |j|, |j| > 1

for some κ > 0.

(c) There exist functions a(·, j) : (0, 1]→ R, j ∈ Z, with

(i) supt
∣∣at,T (j)− a( tT , j)

∣∣ 6 K
Tl(j) .

(ii) |a(u, j)− a(v, j)| 6 K|u−v|
l(j)

(iii) supu

∣∣∣∂ia(u,j)
∂ui

∣∣∣ 6 K
l(j) , i = 0, 1, 2, 3.

Following Sergides (2008), Dahlhaus and Subba Rao (2006) and Subba Rao (2006) we
define, for some u ∈ (0, 1), the stationary process X̃t(u) by

X̃t(u) :=

∞∑
j=−∞

a(u, j)εt−j , (2.6)

for which Xt,T = X̃t(u) + OP
(∣∣ t
T − u

∣∣+ 1
T

)
(cf. Sergides (2008), Equation (1.1.19),

and Dahlhaus and Subba Rao (2006), p.4). We then define the time varying spectral
density and covariances as the corresponding functions of the stationary approximation
X̃t(u), i.e. the time varying spectral density is given by

f(u, λ) =
1

2π
|A(u, λ)|2, (2.7)

with A(u, λ) :=
∑∞
j=−∞ a(u, j)e−iλj , while the time varying covariance of lag h, h ∈ Z

(at rescaled time u) is given by c(u, h) :=
∫ π
−π f(u, λ)eiλhdλ. Referring to Dahlhaus

(2003), Equation (17), it holds cov(XbuTc,T , XbuTc+h,T ) = c(u, h) + O
(

1
T

)
uniformly

in u and h.

Assumption A.1. In the remainder of the paper, the time-varying covariances c(u, h)
are assumed to be absolutely summable for every u ∈ [0, 1].
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2 Moving local Fourier transform (MLFT)

2.4 Asymptotic statistical properties of the MLFT

In order to obtain mathematically precise asymptotic assertions in the context of
locally stationary processes as above, we need the following assumptions on the sample
size T and the segments length 2m+1, which will be assumed throughout the remainder
of the paper:

Assumption A.2. • m→∞ (for T →∞).

• m3

T 2 = O(1) (for T → ∞) i.e. the sample size increases considerably faster than
the window size.

We are now ready to state our first assertion showing that the expectation and more
importantly variance of moving local Fourier coefficients behave analogously to corre-
sponding quantities of Fourier coefficients of stationary time series:

Theorem 2.1. Let {Xt,T } be a locally stationary process as in Definition 2.4.

(a) Then, it holds

(i) E
(
MFbuTc(λl)

)
= 0, 0 6 u 6 1, l = 1, . . . ,m,

(ii) sup
u∈[0,1]

sup
l=1,...,m

| var(MFbuTc(λl))− 2πf(u, λl)| → 0 (T →∞).

(b) If additionally supu∈[0,1]

∑∞
j=−∞ |a(u, j)|

√
|j| <∞, then

sup
u∈[0,1]

sup
l=1,...,m

| var(MFbuTc(λl))− 2πf(u, λl)| = O

(
1√
m

)
.

In the classic stationary time series setting, Fourier coefficients are asymptotically
uncorrelated. For the moving local Fourier coefficients this remains true as long as
either the frequencies are far enough apart or if they are based on observations that
are close enough together. Recall, that we calculate the frequencies λ1, . . . , λm and
then start over. Consequently, it can happen (see the case distinctions in the definition
of the moving local Fourier coefficients), that for a given location 0 6 u 6 1 the local
Fourier coefficients (at buT c) at frequencies λl and λk come from two stretches that
are shifted by m − |k − l| (rather than |k − l|) observations. If l and k are close but
at the same time the Fourier coefficients come from such strongly shifted sets, the
covariance can only be guaranteed to be asymptotically bounded but does not need to
converge to zero.

The following theorem, characterizes this assertion in more details. Fortunately, for
many application such as spectral density estimation the set of Fourier coefficients
with non-vanishing correlation is sufficiently small to be asymptotically negligible (see
Section 2.6):

Theorem 2.2. Let {Xt,T } be a locally stationary process as in Definition 2.4 and am
be a sequence with am →∞, am

m → 0.

(a) It holds as T →∞

(i) sup
06u61

sup
16l,j6m

| cov(MFbuTc(λl),MFbuTc(λj))| = O(1),

(ii) sup
06u61

sup
16l,j6m

|l−j|>am

∣∣cov(MFbuTc(λl),MFbuTc(λj))
∣∣ = o(1),

(iii) sup
06u61

sup
16l 6=j6m,

|l−j|6am,(l,j)∈M(buTc,m)

∣∣cov(MFbuTc(λl),MFbuTc(λj))
∣∣ = o(1),
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2 Moving local Fourier transform (MLFT)

where the set M(k,m) contains all pairs (l, j), which are in the same case of
Definition 2.2 for given k, i.e.

M(k,m) ={(l, j) ∈ {1, . . . ,m}2 : l, j ∈ [mod(k)− bm/2c,mod(k) + dm/2e)}
∪ {(l, j) ∈ {1, . . . ,m}2 : l, j 6∈ [mod(k)− bm/2c,mod(k) + dm/2e)}.

(b) If additionally supu∈[0,1]

∑∞
j=−∞ |a(u, j)|

√
|j| <∞, then

(i) sup
06u61

sup
16l,j6m

|l−j|>am

∣∣cov(MFbuTc(λl),MFbuTc(λj))
∣∣ = O

(
1

am
+

1√
m

)
,

(ii) sup
06u61

sup
16l 6=j6m,

|l−j|6am,(l,j)∈M(buTc,m)

∣∣cov(MFbuTc(λl),MFbuTc(λj))
∣∣ = O

(
am
m

+
1√
m

)
.

Remark 2.4. Similar restrictions also apply to the moving Fourier coefficients MFl,MFj
with |l − j| < 3m, i.e. they are asympotically uncorrelated if either the corresponding
frequencies are far apart (|mod(l) − mod(j)| > am) or if they are calculated from
the same stretch of frequencies with no jump from frequency λm to λ1 in between
(|mod(l)−mod(j)| = |l−j|); see Lindner (2014), Theorem 5.4. As soon as |l−j| > 3m,
all moving Fourier coefficients become asymptotically uncorrelated due to the fact that
the underlying observations grow further and further apart (see Lemma 5.1 in Lindner
(2014)).

Similarly, one can obtain the following result for the covariance of the moving local
periodogram:

Theorem 2.3. Let {Xt,T } be a locally stationary process as in Definition 2.4 and am
be a sequence with am →∞, am

m → 0.

(a) It holds for any 0 6 u 6 1 as T →∞

(i) sup
06u61

sup
16l,j6m

| cov(MIbuTc(λl),MIbuTc(λj))| = O(1),

(ii) sup
06u61

sup
16l,j6m

|l−j|>am

∣∣cov(MIbuTc(λl),MIbuTc(λj))
∣∣ = o(1),

(iii) sup
06u61

sup
16l 6=j6m,

|l−j|6am,(l,j)∈M(buTc,m)

∣∣cov(MIbuTc(λl),MIbuTc(λj))
∣∣ = o(1),

where the set M(·,m) is defined as in Theorem 2.2.

(b) If additionally supu∈[0,1]

∑∞
j=−∞ |a(u, j)|

√
|j| <∞, then

(i) sup
06u61

sup
16l,j6m

|l−j|>am

∣∣cov(MIbuTc(λl),MIbuTc(λj))
∣∣ = O

(
1

a2
m

+
1√
m

)
,

(ii) sup
06u61

sup
16l 6=j6m,

|l−j|6am,(l,j)∈M(buTc,m)

∣∣cov(MIbuTc(λl),MIbuTc(λj))
∣∣ = O

(
a2
m

m2
+

1√
m

)
.

In particular, one gets

sup
06u61

sup
16l 6=j6m,

(l,j)∈M(buTc,m)

∣∣cov(MIbuTc(λl),MIbuTc(λj))
∣∣ = O

(
1√
m

)
.
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2.5 A useful tool: Approximation by the MLFT of independent
random variables

To obtain the results of the previous section we made explicit use of the linear structure
of locally stationary processes. Similarly to classic stationary linear processes (see e.g.
Theorem 10.3.1 in Brockwell and Davis (2006)) we used the following relationship
between the (local) moving Fourier coefficients of the locally stationary process as well
as the (local) moving Fourier coefficients of the corresponding i.i.d. sequence.

Theorem 2.4. Let {Xt,T } be a locally stationary process as in Definition 2.4 in ad-
dition to A(u, λ) =

∑∞
j=−∞ a(u, j)e−iλj. Then, the following decomposition holds

MFbuTc(λl) = A(u, λl)MF
ε
buTc(λl) +RbuTc,m(λl),

where the following assertions hold for the remainder term RbuTc,m(λl):

(a)o It holdsi

(i) ERbuTc,m(λl) = 0,

(ii) sup
u∈[0,1]

sup
l=1,...,m

E |RbuTc,m(λl)|4 → 0 as m→∞.

(b)o If additionally supu∈[0,1]

∑∞
j=−∞ |a(u, j)|

√
|j| <∞, then we even get

sup
u∈[0,1]

sup
l=1,...,m

E |RbuTc,m(λl)|4 = O

(
1

m2

)
.

Similarly, we obtain the following result for moving local periodograms.

Corollary 2.1. (a) Let {Xt,T } be a locally stationary process as in Definition 2.4 with
time varying spectral density f(u, λ). Then, the following decomposition holds

MIbuTc,m(λl) = 2πf (u, λl) MI
ε
buTc,m(λl) +R′buTc,m(λl), (2.8)

with supu∈[0,1] supl=1,...,m E |R′buTc,m(λl)|2 → 0 as T →∞.

(b) If additionally supu∈[0,1]

∑∞
j=−∞ |a(u, j)|

√
|j| <∞, then we even get

sup
u∈[0,1]

sup
l=1,...,m

E |R′buTc,m(λl)|2 = O

(
1

m

)
.

2.6 Applications to spectral density estimation

Before coming to the main result for spectral density estimators we give a kind of
law of large numbers for the moving local periodograms that is needed in the proof
but may also be of independent interest in particular as it duplicates a corresponding
result for stationary time series:

Theorem 2.5. Let Xt,T be a locally stationary process as in Definition 2.4 with spec-
tral density f(u, λj) that is uniformly bounded away from 0, then it holds for 0 6 u 6 1

1

2m+ 1

2m∑
j=1

MIbuTc,m(λj)

2πf(u, λj)

P→ 1.
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Instead of considering the (local) covariance structure of a time series one can also
consider the (local) spectral density estimation. While (moving local) periodograms
are asymptotically unbiased (which follows essentially from Theorem 2.1), they are not
consistent. As for stationary time series we will therefore smooth the periodogram,
i.e. consider kernel density estimators based on periodograms. In the context of lo-
cally stationary time series, Sergides (2008) considered a corresponding kernel density
estimator based on the local periodogram (where for a given point in time 0 6 u 6 1
all frequencies are calculated based on the observations in a local environment).

In this section, we investigate the consistency of the corresponding local spectral den-
sity estimator based on the moving local periodogram.

To elaborate, the smoothed moving periodogram f̂ : {1, . . . , T} → R is defined by

f̂ (k) :=
1

2m+ 1

2m∑
t=−m

Kh

(
λmod(k) − λt

)
MIk (λt) , (2.9)

with MIk,m (λt) being the moving local periodogram as in Definition 2.2 and Kh(·) :=
1
hK

( ·
h

)
for a kernel K and a bandwidth h fulfilling:

Assumption A.3. (i) K is a nonnegative, symmetric function with compact sup-
port.

(ii)
∫
K(x)dx = 1, |K(x)| 6 const.,

2π

(2m+ 1)h

∑
j∈Z

K

(
2πj

(2m+ 1)h

)
=

∫
K(x)dx+ o(1) = 1 + o(1).

(iii) K is uniformly Lipschitz continuous.

(iv) h→ 0 (T →∞) and hm
1
4 →∞.

The following Theorem shows that the smoothed periodogram is in fact a consistent
(even in some uniform sense) estimator for the local spectral density.

Theorem 2.6. Let {Xt,T } be a locally stationary time series as in Definition 2.4 with
time varying spectral density f bounded away from 0 and fulfilling a uniform Lipschitz
condition in the second argument (for any 0 6 u 6 1). Furthermore, let Assumptions
A.3 be fulfilled. Additionally, let supu∈[0,1]

∑∞
j=−∞ |a(u, j)|

√
|j| <∞. Then, for every

u ∈ [0, 1], the estimator f̂ as in (2.9) fulfills

sup
k∈{buTc−dm

2 e+1,...,buTc+bm
2 c}

∣∣∣f̂ (k)− f
(
u, λmod(k)

)∣∣∣ = oP (1).

Remark 2.5. The bandwidth condition is slightly stronger than in the stationary case.
This is due to the rate O(1/

√
m) in Theorem 2.3, which is obtained easily from the

approximations in Section 2.5. In the stationary case, one can get the stronger rate
O(1/m) by much more involved arguments (see Brockwell and Davis (2006), proof
of Theorem 10.3.2). If one can improve this rate for the moving local periodogram as

well, then the bandwidth condition hm
1
3 → ∞ is sufficient for Theorem 2.6, where in

the proof αm = h/m1/3 needs to be chosen.

10



3 Applications to the Bootstrap

3 Applications to the Bootstrap

In the previous sections we have seen that the moving Fourier coefficients of locally
stationary time series are in some sense (almost) asymptotically uncorrelated similar to
global Fourier coefficients of stationary time series. This is in contrast to the sets of all
local periodograms at all frequencies which is not independent due to the duplicated
information. It is this dependence between those periodogram ordinates that make
it difficult or even impossible to use the local periodogram in a bootstrap because
such a bootstrap needed to mimick the full dependence structure correctly. On the
other hand, our moving scheme is very well suited for such a task as it manages to
get rid of this dependence by thinning. Nevertheless, local periodograms have already
been used in the context of bootstrapping by Sergides (2008) but only pointwise to
obtain information about local quantities such as the autocorrelation at a given point
in rescaled time.

In this section, we introduce moving versions of three important classes of frequency
domain bootstrapping, where we will prove that the corresponding bootstrap replicates
in the time domain correctly mimic the local covariance structure for the simplest boot-
strap (the wild TFT-bootstrap). We will then compare the performance of all three
schemes using the example of uniform confidence bands for the local autocorrelation
at lag 1, for which such a moving scheme is essential. Finally, the method is applied
to some wind data.

3.1 Moving wild TFT bootstrap

The following bootstrap is a generalization of the (wild) TFT bootstrap as proposed
by Kirch and Politis (2011) to the new scheme of moving Fourier coefficients.

Step 1: The observed time series is transformed using the moving Fourier coefficients
as in Definition 2.1 (for practical purposes in addition to Remark 2.2) resulting
in MF1, . . . ,MFT .

Step 2: Let Gk, Gk+T , k = 1, . . . , T, be independent identically standard normal ran-
dom variables (independent of the original time series). Generate the boot-
strap samples MF ∗k = x∗k + iy∗k according to

x∗k :=

√
πf̂

(
k

T
, λmod(k)

)
Gk, y∗k :=

√
πf̂

(
k

T
, λmod(k)

)
Gk+T ,

where f̂
(
k
T , λmod(k)

)
is an estimator (based on the moving Fourier transform)

that fulfills

max
k∈{buTc−dm

2 e+1,...,buTc+bm
2 c}

∣∣∣∣f̂ ( kT , λmod(k)

)
− f

(
u, λmod(k)

)∣∣∣∣ = oP (1).

The square of these bootstrap Fourier coefficients give a bootstrap version of
the periodogram for periodogram statistics. For other statistics, we need to
backtransform these sequence into the time domain as in the following step.

Step 3: The moving bootstrap coefficients are transformed back using a moving ver-
sion of the inverse Fourier transform as in Definition 2.3 (in addition to Re-
mark 2.3).

X∗t = F−1 (MF ∗t (λ1),MF ∗t (λ2), . . . ,MF ∗t (λm); t)

=
1√

2m+ 1

m∑
l=1

MF ∗t (λl) e
iλlt +

1√
2m+ 1

m∑
l=1

MF ∗t (λl) e
−iλlt

11



3 Applications to the Bootstrap

with λk := 2π k
N , k = 0, . . . ,m, denoting the Fourier frequencies and t =

1, . . . , T and MF ∗t (λj), j = 1, . . . ,m, obtained analogously to Definition 2.2
from MF ∗1 ,MF

∗
2 , . . ..

This finally yields a bootstrap replicate X∗1,T , X
∗
2,T , . . . , X

∗
T,T of the original

time series in the time domain.

The above bootstrap uses a moving version of the Whittle likelihood as approximation
to the true dependence structure in the frequency domain.

The following theorem proves that the above bootstrap correctly mimics the local
covariance structure of the original locally stationary time series:

Theorem 3.1. Let the assumptions of Theorem 2.6 be fulfilled. Then, it holds

sup
|h|6m

∣∣∣Cov*(X∗buTc,T , X
∗
buTc+h,T )− c(u, h)

∣∣∣ = oP (1).

Remark 3.1. If h > m, then X∗t,T and X∗t+h,T are independent due to the m-
dependence of the bootstrap scheme. This is consistent with the original covariance
structure in the sense that by Dahlhaus and Polonik (2009), Equation (51), it holds as
h→∞

sup
t

∣∣∣∣cT ( t

T
, h

)∣∣∣∣ 6 ∞∑
j=−∞

K

l(j)l(j + h)
= O

(
1

l(h)

)
= o(1).

Instead of using the wild bootstrap in the frequency domain, one can also apply other
frequency domain bootstrap methods in Step 2 as proposed by Kirch and Politis (2011)
in the stationary case such as the residual-based or local bootstrap. For details we
refer to Lindner (2014) Section 7.1.

Remark 3.2. The assertion of the theorem remains true for other frequency domain
bootstrap schemes as long as they fulfill the following assumptions:

(i) E∗(x∗k) = E∗(y∗k) = 0, ∀k = 1, . . . , T.

(ii) Independence of {x∗k, y∗l , k, l = 1, . . . ,m, k 6= l}.

(iii)

sup
k∈{buTc−dm

2 e+1,...,buTc+bm
2 c}
|var(x∗k)− πf(u, λk)| = oP (1).

sup
k∈{buTc−dm

2 e+1,...,buTc+bm
2 c}
|var(y∗k)− πf(u, λk)| = oP (1).

Assumptions (i) and (ii) are fulfilled by construction for the wild as well as the local
or residual-based bootstrap. For the wild bootstrap Assumption (iii) is fulfilled due to
Theorem 2.6.

3.2 Alternative moving bootstrap methods in the frequency domain

Because first-generation frequency domain bootstrap methods as introduced in the
previous section can only mimic the first and second order of time series correctly,
several second-generation frequency domain bootstrap methods have been introduced
in the literature. These hybrid methods also correctly mimic the fourth order structure
of the time series to a certain extend thus extending the class of statistics or the class of
time series for which the bootstrap is valid. This is obtained by combining a bootstrap
in the time domain with a non-parametric correction of the underlying spectral density
in the frequency domain.

12



3 Applications to the Bootstrap

3.2.1 Moving autoregressive aided periodogram bootstrap

For stationary time series Kreiss and Paparoditis (2003) propose the autoregressive
aided periodogram bootstrap which combines a parametric autoregressive bootstrap
with a non-parametric correction of the bootstrap periodogram in the frequency do-
main. This bootstrap has been considered in a locally stationary context by Sergides
(2008) but only for the local Fourier transform so that it can correctly mimic the local
structure of the time series and be applied to local quantities of interest but not global
ones.

However, using the moving Fourier transform introduced in this paper, we can now
give a global adaptation of this method.

Step 1: For every point in time m 6 t 6 T − m we fit an autoregressive model of
order 1 to the data Xt−m,T , . . . , Xt+m,T and calculate the local Yule-Walker-
estimators of the parameters â(t) as well as σ̂(t). The beginning and end of
the time series can be dealt with similarly as in Remark 2.2.

From these, we calculate the centered rescaled residuals ε̂t,T := ε̃t,T− 1
T

∑T
τ=1 ε̃τ,T ,

where

ε̃t,T :=
1

σ̂(t)

(
Xt,T − â(t)Xt−1,T

)
, t = 2, . . . , T.

Step 2: We now obtain a bootstrap sample ε+
t,T , t = 1, . . . , T , by a local Efron boot-

strap from ε̂j,T , j = t −m, . . . , t + m. From this we obtain the time domain
bootstrap observations X+

1,T := X1,T and

X+
t,T := â(t)X+

t−1,T + σ̂(t)ε+
t,T , t = 2, . . . , T.

Step 3: As in Definition 2.2 in addition to Remark 2.2 we calculate the moving local co-
efficients MF+

t (λ1), . . . ,MF+
t (λm) of {X+

t,T } as well as the moving periodogram
MIt(λj). The bootstrap periodograms are then obtained by

MI∗t (λj) := q̂

(
t

T
, λj

)
·MI+

t (λj),

where

q̂

(
t

T
, λ

)
:=

1

2m+ 1

2m∑
j=−m

Kh(λ− λj)
MI+

t,m(λj)

f̂
(t)
AR

(
t
T , λj

) ,
f̂

(t)
AR

(
t

T
, λj

)
:=

(σ̂(t))2

2π
· 1∣∣1− â(t)e−iλj

∣∣2 .
The algorithm as described above produces local bootstrap periodograms and as such
can be used in situations where the statistical quantities of interest are based on these
local periodograms. In all other situations a similar correction of the local Fourier
coefficients in addition to the inverse Fourier transform as in Definition 2.3 can be
used (for the stationary case we refer to Jentsch and Kreiss (2010)).

3.2.2 Moving hybrid wild bootstrap

For stationary time series Kreiss and Paparoditis (2012b) propose a hybrid wild boot-
strap that combines a three-point wild bootstrap in the time domain with a non-
parametric correction of the periodogram in the frequency domain. The three-point

13



4 Simulation study and data analysis

distribution is thereby chosen in such a way that it captures fourth-order properties of
the underlying time series. This method has already been extended to the locally sta-
tionary case by the same authors Kreiss and Paparoditis (2012a) but their adaptation
is based on a global Fourier transform and has to be custom-made for the statistic of
interest.

The following algorithm uses the same idea but based on the moving local Fourier
transform as proposed in this paper:

Step 1: Generate a sample ε∗1, . . . , ε
∗
T of length T of iid random variables meeting

P

(
ε∗t =

√
κ̃t4

)
= P

(
ε∗t = −

√
κ̃t4

)
=

1

2κ̃t4
,

P (ε∗t = 0) = 1− 1

κ̃t4
,

where κ̃t4 := κ̂4

(
t
T

)
+ 3 with

κ̂4

(
k

T

)
:=

Ĝ1

(
k
T

)
− Ĝ2

(
k
T

)
Ĝ3

(
k
T

) ,

where Ĝ1

(
k

T

)
:=

2m∑
j=−m

Kh(0− λj) · MI(2),k(λj),

Ĝ2

(
k

T

)
:=

2m∑
l=0

(MIk(λl))
2
, Ĝ3

(
k

T

)
:=

(
2m∑
l=0

MIk(λl)

)2

.

Here MIk(λ) denotes the moving local periodogram as in Definition 2.2 in
addition to Remark 2.2 while MI(2),k(λ) denotes the moving local periodogram
of the squared time series {X2

t,T }.

Step 2: Calculate the moving local Fourier coefficients {MF ε∗t (λj)} of the bootstrap
errors {ε∗1} as in Definition 2.2 in addition to Remark 2.2.

Step 3: Generate the bootstrap observations in the time domain by

X∗t,T :=
1√

2m+ 1

m∑
j=0

√
f̂

(
t

T
, λj

)(
MF ε

∗

t (λj)e
itλj +MF ε

∗
t (λj)e

−itλj

)
,

where f̂ is an estimator of the spectral density, fulfilling

max
k∈{buTc−dm

2 e+1,...,buTc+bm
2 c}

∣∣∣∣f̂ ( kT , λmod(k)

)
− f

(
u, λmod(k)

)∣∣∣∣ = oP (1).

4 Simulation study and data analysis

We will now illustrate the potential of the moving local Fourier transform in addition
to corresponding bootstrap methods by generating simultaneous (uniform) confidence
bands for the local autocorrelations of order 1. Based on the above bootstrap methods
one can construct simultaneous confidence bounds according to the following algorithm
(confer also Neumann and Polzehl (1998), Sun and Loader (1994) or Lenhoff et al.
(1999)).

Step 1: For every u ∈ L[0, 1] = {t/T, t = 1, . . . , T} calculate an estimate ρ̂(u, 1) of the
autocorrelation function based on the moving local periodogram.

14



4 Simulation study and data analysis

mTFT mAAPB mH
DGP 1a 0.96 0.99 1.00
DGP 1b 0.95 0.99 1.00
DGP 1c 0.97 0.99 1.00

Table 4.1: Empirical coverage probability for variable width confidence bounds at α =
0.05

Step 2: Generate B bootstrap time series by employing a moving bootstrap. For each

time series
{
X∗,bt,T

}
, b = 1, . . . , B, estimate the autocorrelation ρ̂b(u, 1) for

every u ∈ L[0, 1] as well as the standard deviation σ̂ρ̂(u) of ρ̂.

Step 3: Choose Cboot > 0 such that

1

B

B∑
b=1

1

{
max

u∈L[0,1]

∣∣ρ̂b(u, 1)− ρ̂(u, 1)
∣∣

σ̂ρ(u)
6 Cboot

}
> 1− α,

for some prescribed α, 0 < α < 1.

Alternatively, choose C ′boot > 0 such that

1

B

B∑
b=1

1

{
max

u∈L[0,1]

{∣∣ρ̂b(u, 1)− ρ̂(u, 1)
∣∣} 6 C ′boot

}
> 1− α,

for some prescribed α, 0 < α < 1.

Step 4: The simultaneous 1−α variable width confidence band for ρ(u, 1), 0 6 u 6 1,
is then given by

CBvariable := [ρ̂(u, 1)− Cboot · σ̂ρ(u), ρ̂(u, 1) + Cboot · σ̂ρ(u)]

and the simultaneous 1− α fixed width confidence band by

CBfixed := [ρ̂(u, 1)− C ′boot, ρ̂(u, 1) + C ′boot].

In our simulations, the moving bootstrap method, as referred to in Step 2, will either be
the moving TFT-bootstrap, the moving autoregressive aided periodogram bootstrap
or the moving wild hybrid bootstrap. We will use B = 500 bootstrap replicates, a
bandwidth of m = 100 for the moving transform and empirical results will be based
on R = 200 repetitions, α = 0.05.

We will use the following time-varying AR(1)-process

Xt,T = at,T ·Xt−1,T + εt, at,T =

(
1− t

T

)
· (−0.6) +

t

T
· 0.6. (DGP 1)

as well as the following time-varying MA(1)-process

Xt,T = 1.1 · cos

(
1.5− cos

(
4π i

T

))
· εt−1 + εt, (DGP 2)

in simulations, where we use i.i.d. (a) standard normal, (b) standardized exponential
and (c) standardized χ2 random variables. Figure 4.1 displays two such realizations.

To account for the boundary effects which occur as we don’t use the moving versions
of the bootstrap for the very first and the very last observations, we only evaluate the
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4 Simulation study and data analysis

Figure 4.1: A realization of DGP 1c (top) and DGP 2a (bottom)

simulations in between t = 200 and t = 800. The below figures, however, display the
whole range of t = 1 to t = 1000. One can clearly see – for example in Figure 4.2 –
the effect of the blockwise bootstrap in the beginning and at the end.

Table 4.1 and Figure 4.2 show the results for the variable width confidence bounds and
DGP 1. In this situation the local TFT-bootstrap has a coverage probability closest
to the target value while the local autoregressive aided periodogram bootstrap as well
as the local hybrid bootstrap are rather conservative, i.e. the confidence bounds are
too wide, although this may partly be due to the fact that we only evaluate in the
middle of the time series.

The results for DGP 2 as given in Table 4.2 and Figure 4.3 look quite different, where
the coverage probability is too low in all cases. Only the moving autoregressive aided
periodogram bootstrap processes somewhat acceptable results. However, when looking
at Figure 4.3 it becomes apparent, where the problem lies as all bootstrap methods
struggle at the locations where the autocorrelation structure changes relatively quickly
(as compared to the global bandwidth m). This is an effect that is intrinsic to all such
methods with fixed global bandwidth choice m. In fact, it is rather suprising that the
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4 Simulation study and data analysis

Figure 4.2: Confidence bands (variable width) for the time-varying autocorrelation at
lag 1 of moving version of (a) TFT bootstrap, (b) AAP bootstrap and (c)
wild hybrid bootstrap for DGP1a for different realizations

mTFT mAAPB mH
DGP 2a 0.02 0.86 0.41
DGP 2b 0.01 0.90 0.23
DGP 2c 0.02 0.91 0.32

Table 4.2: Empirical coverage probability for variable width confidence bounds at α =
0.05
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4 Simulation study and data analysis

Figure 4.3: Confidence bands (variable width) for the time-varying autocorrelation at
lag 1 of moving version of (a) TFT bootstrap (fixed width), (b) AAP boot-
strap and (c) wild hybrid bootstrap for DGP2a for different realizations

18



4 Simulation study and data analysis

moving autoregressive aided periodogram bootstrap works so well considering that the
underyling local bootstrap in the time domain is based on a time-varying autoregressive
approximation, while the true nature is a time-varying moving-average process.

We will now apply this methodology to a data set containing hourly data on the wind
speed at the Meteorological Office station in Aberporth, Wales. This data set has
already been studied by Hunt and Nason (2001), Nason and Sapatinas (2002), Eckley
and Nason (2014). In order to remove the trend, we use differencing (see also Eckley
and Nason (2014)). The resulting time series, as well as its estimated time-varying
spectral density are displayed in Figure 4.4.

Figure 4.4: Time series ∆Xt of the wind data (top) and estimated time-varying spec-
tral density (bottom).

Figure 4.5 displays the estimated time-varying autocorrelation function at lag 1 of the
data. Using the mTFT-bootstrap, a 95%-confidence band of fixed width has been
caluculated (black lines). Since it is possible to fit a horizontal line within the uniform
confidence bounds it cannot be concluded that the autocorrelation at lag one of the
data set is in fact time-varying – even though the local estimate does show some time
variation.
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5 Proofs

Figure 4.5: 0.95-confidence band of ρ(u, 1) of the wind data using the moving local
TFT-bootstrap.

5 Proofs

5.1 Proofs of Section 2.5

We start by proving the tools of Section 2.5 as those are necessary for the proofs in
Section 2.4.

Proof of Theorem 2.4. Let MF X̃buTc(λl) resp. MF εbuTc(λl) be defined as in Defini-

tion 2.2 but for the stationary time series X̃t(u) =
∑∞
j=−∞ a(u, j) εt−j as in (2.6) resp.

the i.i.d. sequence {εt} (which is centered and has unit variance). From the proof of
Theorem 10.3.1 in Brockwell and Davis (2006) it follows

MF X̃buTc(λl) = A(u, λl)MF
ε
buTc(λl) +R

(1)
buTc,m(λl),

where ER
(1)
buTc,m(λl) = 0 and by analogous arguments (using the 4th order Minkowski

instead of the 2nd order Minkowski inequality)

E
∣∣∣R(1)
buTc,m(λl)

∣∣∣4 6 C
1

m2

 ∞∑
j=−∞

|a(u, j)|
√

min(|j|, 2m+ 1)

4

,

where C only depends on E ε4
1 (but not u,m, T, l). Hence, it follows from sup06u61

∑∞
j=−∞ |a(u, j)| <

∞ (by Definition 2.4 (c) (iii)) as in Brockwell and Davis, Proof of Theorem 10.3.1,

sup
u∈[0,1]

sup
l=1,...,m

E |R(1)
buTc,m(λl)|4 → 0

as well as

sup
u∈[0,1]

sup
l=1,...,m

E |R(1)
buTc,m(λl)|4 = O

(
1

m2

)
under the stronger assumptions of (b).

In order to distinguish between the three cases in Definition 2.2, we introduce the
notation

ζt = ζt(u, T ) =


−1, t−mod(buT c) > dm/2e,
0 −bm/2c 6 t−mod(buT c) < dm/2e,
+1, t−mod(buT c) < −bm/2c.

(5.1)
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5 Proofs

Consider now

R
(2)
buTc,m(λl) = MFbuTc(λl)−MF X̃buTc(λl) = MFbuTc−mod(buTc)+l+ζtm −MF

X̃
buTc(λl)

=
1√

2m+ 1

2m∑
t=0

∞∑
j=−∞

(
at+buTc−mod(buTc)+mζt+l−m,T (j)− a(u, j)

)
e−itλl

· εt+buTc−mod(buTc)+mζt+l−m−j

with ER
(2)
buTc,m(λl) = 0. First note that by Definition 2.2 (c) (i) and (ii) it holds

uniformly in 0 6 u 6 1, 0 6 t 6 2m, 1 6 l 6 m∣∣at+buTc−mod(buTc)+mζt+l−m,T (j)− a(u, j)
∣∣ 6 K

m

T l(j)
.

Because {εt} is i.i.d. and centered with fourth moments, it holds

E (εt1−j1εt2−j2εt3−j3εt4−j4) =

{
O(1), the differences ts − js, s = 1, . . . , 4, are pairwise equal

0, otherwise.

(5.2)

Consequently,

sup
u∈[0,1]

sup
l=1,...,m

E
∣∣∣R(2)
buTc,m(λl)

∣∣∣4 = O(1)
m4

T 4

∣∣∣∣∣∣
∞∑

j=−∞

1

l(j)

∣∣∣∣∣∣
4

= O

(
m4

T 4

)
= O

(
1

m2

)

by Assumption A.2. Setting RbuTc,m(λl) = R
(1)
buTc,m(λl) + R

(2)
buTc,m(λl) completes the

proof.

Proof of Corollary 2.1. We follow again the proof of Brockwell and Davis (2006),
Theorem 10.3.1. By (2.7) decomposition (2.8) holds with

R′buTc,m(λ) =A (u, λl)MF
ε
buTc(λj)RbuTc,m(λl) +A (u, λl)MF εbuTc(λj)RbuTc,m(λl)

+ |RbuTc,m(λl)|2

with the notation of Theorem 2.4. Because

|A(u, λ)| 6
∞∑

j=−∞
|a(u, j)| 6 K

∞∑
j=−∞

1

l(j)
<∞ (5.3)

uniformly in u and l by Definition 2.4 and E
∣∣∣MF εbuTc(λj)∣∣∣4 6 C uniformly in u and l by

(5.2), the assertions follow from Theorem 2.4 by an application of the Cauchy-Schwarz
inequality.

5.2 Proofs of Section 2.4

Proof of Theorem 2.1. Assertion (a)(i) follows from the centeredness of {Xt,T }
in addition to the definition of the moving local Fourier coefficients.

For the other assertions, we get by Theorem 2.4 and E(RbuTc,m(λl)) = 0

var(MFbuTc(λl))

= A(u, λl)A(u, λl) var(MF εbuTc(λl))

+A(u, λl) E(MF εbuTc(λl)RbuTc,m(λl)) +A(u, λl) E(MF εbuTc(λl)RbuTc,m(λl)))

+ E
∣∣RbuTc,m(λl)

∣∣2 =: A1 +A2 +A2 +A3.
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Since {εt} is i.i.d. with var ε1 = 1 a simple calculation shows var(MF εbuTc(λl)) = 1,

hence by (2.7) we get A1 = 2πf(u, λl). Consequently, by Theorem 2.4 and (5.3)
applications of the Cauchy-Schwarz inequality yield A2 = o(1), A3 = o(1) and under
the assumption of (b) even A2 = O(1/

√
m) and A3 = O(1/m), which completes the

proof.

Proof of Theorem 2.2. We will first prove the following corresponding result for the
moving local Fourier coefficients {MF εbuTc(λl)} of the i.i.d. innovation sequence {εt}:

sup
06u61

cov
(
MF εbuTc(λl),MF

ε
buTc(λj)

)
= O

(
1

|l − j|

)
n, (5.4)

sup
06u61

cov
(
MF εbuTc(λl),MF

ε
buTc(λj)

)
= O

(
|l − j|
m

)
if (l, j) ∈M(buT c,m), l 6= j.

(5.5)

By Theorem 2.1 (a)(i) we get by the indepence of the innovations (and the existence
of a second moment) with the notation as in (5.1)

cov
(
MF εbuTc(λl),MF

ε
buTc(λj))

)
= E

(
MF εbuTc(λl)MF

ε
buTc(λj)

)
=

1

2m+ 1

2m∑
t1,t2=0

E(εt1−m+buTc−mod(buTc)+mζl+l εt2−m+buTc−mod(buTc)+mζj+j)e
−iλlt1eiλjt2

= O

 1

2m+ 1

min{2m,2m+j−l+m(ζj−ζl)}∑
t=max{0,j−l+m(ζj−ζl)}

e−iλl−jt−iλj(j−l+m(ζj−ζl))


= O

 1

2m+ 1

2m−|j−l+m(ζj−ζl)|∑
t=0

e−iλl−jt

 = O(1),

where the constants do not depend on u. By an application of Lemma A.4 in Kirch
(2007) we get assertion (5.4). On the other hand for any r > 0 and l 6= j

r∑
t=0

eiλl−jt = −
2m∑

t=r+1

eiλl−jt = O(2m− r),

which yields (5.5) if ζl = ζj , i.e. (l, j) ∈M(buT c,m).

The proof can now be concluded as in the proof of Theorem 2.1 by an application of
Theorem 2.4 (for more details we refer to Lindner (2014), Proof of Theorem 5.3).

Proof of Theorem 2.3. We will first prove the following corresponding result for
the moving local periodogram {MIεbuTc(λl)} of the i.i.d. innovation sequence {εt}:

var(MIεbuTc(λl)) = 1 +
E(ε4

1)− 3

2m+ 1
= O(1), (5.6)

cov(MIεbuTc(λl),MI
ε
buTc(λj)) = Ru(l, j) + R̃u(l, j),

where sup
06u61

sup
16l,j6m

|R̃u(l, j)| = O

(
1

m

)
, (5.7)

sup
06u61

|Ru(l, j)| = O

(
1

|l − j|2

)
, (5.8)

sup
06u61

|Ru(l, j)| = O

(
|l − j|2

m2

)
if (l, j) ∈M(buT c,m), l 6= j, (5.9)

By E(εk1εk2) = 1{k1=k2} it follows from the definition of the moving periodogram that

EMIεbuTc(λl) = varMF εbuTc(λl) = 1. (5.10)
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5 Proofs

Furthermore, with the notation as in (5.1) we get by {εt} i.i.d. and centered

E(MIεbuTc,m(λl)MIεbuTc,m(λj))

=
1

(2m+ 1)2

2m∑
t1,t2,t3,t4=0

e−i(t1−t2)λlei(t3−t4)λjE(εt1+mζl+lεt2+mζl+lεt3+mζj+jεt4+mζj+j)

=
1

(2m+ 1)2

mζl+l+2m∑
t1,t2=mζl+l

mζj+j+2m∑
t3,t4=mζj+j

e−i(t1−t2)λlei(t3−t4)λj E (εt1εt2εt3εt4)

= E ε4
1

1

(2m+ 1)2

mζl+l+2m∑
t1,t2=mζl+l

mζj+j+2m∑
t3,t4=mζj+j

1{t1=t2=t3=t4}

+
1

(2m+ 1)2

mζl+l+2m∑
t1,t2=mζl+l

mζj+j+2m∑
t3,t4=mζj+j

1{t1=t2 6=t3=t4}

+
1

(2m+ 1)2

mζl+l+2m∑
t1,t2=mζl+l

mζj+j+2m∑
t3,t4=mζj+j

1{t1=t4 6=t2=t3}e
−it1λl+jeit2λl+j

+
1

(2m+ 1)2

mζl+l+2m∑
t1,t2=mζl+l

mζj+j+2m∑
t3,t4=mζj+j

1{t1=t3 6=t2=t4}e
−it1λl−jeit2λl−j

= A1 +A2 +A3 +A4.

Note that the number of overlapping summand for t1, t2 on the one hand and t3, t4
on the other hand is given by

Σ(l, j) = Σu,T (l, j) = 2m+ min(mζl + l,mζj + j)−max(mζl + l,mζj + j) + 1

= 2m+ 1− |l − j +m(ζl − ζj)|.

Consequently, we get

A1 =
Σ(l, j)

(2m+ 1)2
E ε4

1,

as well as

A2 = 1− 1

(2m+ 1)2

mζl+l+2m∑
t1,t2=mζl+l

mζj+j+2m∑
t3,t4=mζj+j

1{t1=t2=t3=t4}e
−i(t1−t2)λlei(t3−t4)λj

= 1− Σ(l, j)

(2m+ 1)2
.

Similar arguments yield

A3 =
1

(2m+ 1)2

∣∣∣∣∣∣
Σ(l,j)−1∑
t=0

e−itλl+j

∣∣∣∣∣∣
2

− Σ(l, j)

(2m+ 1)2
= R1 −

Σ(l, j)

(2m+ 1)2
,

A4 =
1

(2m+ 1)2

∣∣∣∣∣∣
Σ(l,j)−1∑
t=0

e−itλl−j

∣∣∣∣∣∣
2

− Σ(l, j)

(2m+ 1)2
= R2 −

Σ(l, j)

(2m+ 1)2
.

As in the proof of Theorem 2.2 we conclude that R2 fulfills (5.8) and (5.9) as well
as that R1 fulfills (5.9). Furthermore by Lemma A.4 in Kirch Kirch (2007) fulfills as
1 6 l 6= j 6 m

R1 = O

(
max

(
1

(l + j)2
,

1

(2m+ 1− (l + j))2

))
= O

(
1

|l − j|2

)
.
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Putting everything together we obtain the assertions with Ru(l, j) = R1 + R2 and

R̃u(l, j) = −3 Σ(l,j)
(2m+1)2 .

For l = j we have Σ(l, j) = 2m+ 1, hence R1 = 0 and R2 = 1, which implies (5.6).

The proof can now be concluded analogously to the proof of Theorem 2.1 by an
application of Corollary 2.1.

5.3 Proofs of Section 2.6

Proof of Theorem 2.5. By (5.10) and Corollary 2.1 (a)(i) it holds

E

 1

2m+ 1

2m∑
j=1

MIbuTc,m(λj)

2πf(u, λj)

→ 1.

Furthermore, by Theorem 2.3 (a) it holds

var

 1

2m+ 1

2m∑
j=1

MIbuTc,m(λj)

2πf(u, λj)

 = O

(
1

m2

) 2m∑
i=1

2m∑
j=1

∣∣cov
(
MIbuTc,m(λj),MIbuTc,m(λj)

)∣∣
= O

(am
m

)
+O

(
1

m2

) 2m∑
i,j=1
|i−j|>am

∣∣cov
(
MIbuTc,m(λj),MIbuTc,m(λj)

)∣∣ = o(1)

with any choice of am → ∞ such that am/m → 0. An application of the Cauchy-
Schwarz inequality now yields the assertion.

Proof of Theorem 2.6. To ease notation, we set MIs(λ) = MIs,m(λ). The key
observation for the proof is the following: Due to the compactness of the Kernel the
only non-zero summands in f̂(k) (for every k) are the ones with |t−mod(k)| 6 Cmh
for a suitable constant C. Consequently, the only moving local periodograms involved
in every estimation (with h sufficiently small) are from the middle case in Definition 2.2
for the moving local periodogram at k. Furthermore, for every k ∈ {buT c −

⌈
m
2

⌉
+

1, . . . , buT c+
⌊
m
2

⌋
} it either holds MIk(λt) = MIs(λt) or MIk(λt) = MIs+m(λt), where

s = s(u,m) = mj(u,m) + bm/2c + 1 for a suitably chosen 0 6 j(u,m) < T/m
with |s − buT c| 6 m. This can be seen by the way the moving periodograms are
constructed: Moving to the right, we calculate the frequencies λ1, . . . , λm, then jump
to λ1 again. In each estimation f̂(k) only moving periodograms from neighboring
observations and with close frequencies are used, i.e. only moving periodograms within
the same sequence λ1, . . . , λm are used. For any u and all k from the corresponding
range only two (consecutive) such sequences are involved, which are characterized by
s(u,m) (the point in the middle of each sequence) above.

By Definition 2.4 and (2.7) it holds supj=1,...,m |f(u, λj)− f(s/T, λj)| → 0, so that by
Theorem 2.1 (b)

sup
16l6m

|EMIs(λl)− 2πf(u, λl)| → 0. (5.11)

By Assumptions A.3 and the uniform Lipschitz condition on the time-varying spectral
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density it follows

sup
16l6m

∣∣∣∣∣E 1

2m+ 1

2m∑
t=−m

Kh (λl − λt)MIs(λt)− 2πf(u, λl)

∣∣∣∣∣
6 sup

16l6m

∣∣∣∣∣ 1

2m+ 1

2m∑
t=−m

Kh (λl − λt) (EMIs(λt)− 2πf(u, λt))

∣∣∣∣∣
+ 2π sup

16l6m

∣∣∣∣∣ 1

2m+ 1

2m∑
t=−m

Kh (λl − λt) (f(u, λt)− f(u, λl))

∣∣∣∣∣ = o(1) +O(h) = o(1).

as well as an analogous assertion for s replaced by s+m.

Consequently, it is sufficient to prove that for any s = s(u,m) it holds

sup
16l6m

∣∣∣∣∣ 1

2m+ 1

2m∑
t=−m

Kh (λl − λt) (MIs(λt)− EMIs(λt))

∣∣∣∣∣→ 0.

From Theorem 2.3 we get by the choice am =
√
m for t1 6= t2

cov(MIs(λt1),MIs(λt2))| = O

(
1√
m

)
(5.12)

and boundedness for t1 = t2.

The remainder of the proof is very close to the proof of Theorem A1 in Franke and

Härdle (1992) and as such is only sketched. Define αm := h

m
1
4

, as well as µm :=
⌊

1
αm

⌋
.

Define θj = πj/µm, j = 0, . . . , µm. Then

sup
16l6m

∣∣∣∣∣ 1

2m+ 1

2m∑
t=−m

Kh (λl − λt) (MIs(λt)− EMIs(λt))

∣∣∣∣∣
= sup
j=0,...,µm−1

sup
|λl−θj |6παm

∣∣∣∣∣ 1

2m+ 1

2m∑
t=−m

Kh (λl − λt) (MIs(λt)− EMIs(λt))

∣∣∣∣∣
6 sup
j=0,...,µm−1

∣∣∣∣∣ 1

2m+ 1

2m∑
t=−m

Kh (θj − λt) (MIs(λt)− EMIs(λt))

∣∣∣∣∣
+ sup
|λl−λr|6παm

∣∣∣∣∣ 1

2m+ 1

2m∑
t=−m

(Kh (λl − λt)−Kh (λr − λt))MIs(λt)

∣∣∣∣∣
+ sup
|λl−λr|6παm

∣∣∣∣∣ 1

2m+ 1

2m∑
t=−m

(Kh (λl − λt)−Kh (λr − λt)) E(MIs(λt))

∣∣∣∣∣
= A1 +A2 +A3.

By (5.12) and the Markov-inequality it holds

P (A1 > ε) 6
µm−1∑
j=0

P

(∣∣∣∣∣ 1

2m+ 1

2m∑
t=−m

Kh (θj − λt) (MIs(λt)− EMIs(λt))

∣∣∣∣∣ > ε

)

6
µm−1∑
j=0

1

(2m+ 1)2ε2

2m∑
t1,t2=−m

Kh (θj − λt1)Kh (θj − λt2) cov (MIs(λt1),MIs(λt2))

= O

(
µm
hm

+
µm√
m

)
= O

(
1

h2m3/4
+

1

hm1/4

)
= o(1).
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By Theorem 2.5 and Assumptions A.3

A2 = O
(αm
h2

) 1

2m+ 1

2m∑
t=−m

MIs(λt) = O
(αm
h2

)
= O

(
1

hm1/4

)
= o(1),

where we used the fact that f is uniformly bounded, hence

1

2m+ 1

2m∑
t=−m

MIs(λt) = O

(
1

2m+ 1

2m∑
t=−m

MIs(λt)

2πf(u, λt)

)
= O(1).

Similarly, by (5.11) and Assumptions A.3 it holds

A3 = O
(αm
h2

)
= o(1),

completing the proof.

5.4 Proofs of Section 3.1

Proof of Theorem 3.1. First by definition it holds E∗X∗t = 0 as well as uniformly
in k ∈ {buT c −

⌈
m
2

⌉
+ 1, . . . , buT c+

⌊
m
2

⌋
}

cov∗(MF ∗k ,MF
∗
l ) =

{
2πf(u, λmod(k)) + oP (1), k = l,

0, else.

Consequently,

cov∗(MF ∗buTc(λr),MF
∗
buTc+h(λs))

=

{
2πf(u, λr) + oP (1), r = s and MF ∗buTc(λr) = MF ∗buTc+h(λr),

0, else.

The condition MF ∗buTc(λr) = MF ∗buTc+h(λs) is only met if the same bootstrap moving
Fourier coefficients are used, i.e. if they are the closest moving Fourier coefficients
to frequency λk for both locations buT c as well as buT c + h. Consequently, the
condition is met for the moving local Fourier coefficients belonging to the moving
Fourier coefficients MF ∗k with buT c+ h− bm/2c 6 k < buT c+ dm/2e for h > 0 resp.
buT c − bm/2c 6 k < buT c+ h+ dm/2e for h < 0.

We will now add the missing variances of the Fourier coefficients that are not overlap-
ping in order to be able to argue as in the stationary case. Additionally we prove that
the contribution by these non-overlapping coefficients is asymptotically negligible:

Since cov∗(MF ∗k ,MF
∗
l ) = 0, k 6= l, we get uniformly

(2m+ 1) Cov*(X∗buTc,T , X
∗
buTc+h,T ) = (2m+ 1) E∗

(
X∗buTc,T X

∗
buTc+h,T

)
= oP (m) + 2π

m∑
l=1

f(u, λl)e
iλlbuTce−iλl(buTc+h) + 2π

m∑
l=1

f(u, λl)e
−iλlbuTceiλl(buTc+h)

+ (2m+ 1)Rm,h

= oP (m) + 2π

m∑
l=−m

f(u, λl)e
−iλlh − 2πf(u, 0) + (2m+ 1)Rm,h

= oP (m) + (2m+ 1)

∫ π

−π
f(u, λ)e−iλh dλ+ (2m+ 1)Rm,h

= oP (m) + (2m+ 1) c(u, h) + (2m+ 1)Rm,h,
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where Rm,h contains those variances belonging to the moving local Fourier coefficients
that are different at time buT c and buT c + h. Let us denote the set of moving local
Fourier coefficients that are different by Au,h, where for the following arguments it is
only important that the cardinality of Au,h is |h| and that the indices in it are (at
most) two subsequent sets of numbers, so that by Lemma A.4 in Kirch (2007)∑

l∈Au,h

e−iλl(h+n) = O (|h|) as well as

∑
l∈Au,h

e−iλl(h+n) = O

(
max

(
2m+ 1

|n+ h|
,

2m+ 1

2m+ 1− |n+ h|

))
for 1 6 |h+ n| 6 2m

and analogous assertions for the term involving e+iλl(h+n).

With the first assertion and f(u, λl) = 1
2π

∑∞
n=−∞ c(u, n) e−iλln we get

sup
|h|6m/ log(m)

|Rm,h| = sup
|h|6m/ log(m)

∣∣∣∣∣∣ 1

2m+ 1

∞∑
n=−∞

c(u, n)

 ∑
l∈Au,n

e−iλl(n+h) +
∑

l∈Au,n

eiλl(n+h)

∣∣∣∣∣∣
= O

(
1

logm

) ∞∑
n=−∞

|c(u, n)| = o(1)

by the summability of the local autocovariance function. Furthermore,

sup
m/ log(m)<|h|6m

|Rm,h|

6
∑
|n|>
√
m

|c(u, n)|+O(1) sup
m/ log(m)<|h|6m

∑
|n|<
√
m

|c(u, n)|max

(
1

|n+ h|
,

1

2m+ 1− |n+ h|

)
= o(1)

as the first summand converges to zero by the summability of the local autocovariance
function and the second summand by the fact that |n+ h| > m/ logm−

√
m→∞ as

well as 2m+ 1− |n+ h| > 2m+ 1−m−
√
m→∞. This completes the proof.
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